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About the Author

Hi! My name is Hamza Alsamraee, and I am a senior (12th grade)
at Centreville High School, Virginia. I have always had an affinity
for mathematics, and from a very young age was motivated to pur-
sue my curiosity. When I entered a new school in 7th grade after
moving, I encountered some new mathematics I was unequipped
for. Namely, I did not know what a linear equation even was! I was
rather low-spirited, as I was stuck in an ever-lasting loop of confu-
sion in class.

My mother and father soon began teaching me to the best of their
ability. Fortunately, their efforts were effective, and I got a B on
my first linear equations test! It was a huge improvement from be-
ing totally lost, but I wanted to know more. I did not care much
about the grade, but I did care that I did not completely master
the material.

I soon entered in a period of rapid learning, delving into curricu-
lums significantly beyond my coursework simply for the sake of
mastering higher mathematics. It seemed to me that the more I
explored the field, the more beautiful the results were.

I quickly got bored of the regular algebra and geometry problems,
and wanted to know if there was more to mathematics. I browsed
the web for "hard math problems," and stumbled across this inte-
gral:

15
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∫ 1

−1

√
1 + x

1− x
dx = π (1)

Well, I knew what π is, but what is that long S symbol on the left
side? So, I browsed the web again, but this time asking what that
"long S symbol" is. It is an integral! Cool, I thought, but what
does that even mean?

Soon started a period where I was almost obsessed with those math-
ematical creatures! The evaluation of integrals and series quickly
became a hobby, leading me to challenge myself everyday with a
new integral or series that "looked" like it might yield a nice closed
form.

As I delved deeper into the subject matter, I discovered the well-
known special functions such as the gamma and zeta functions. Be-
ing a physics enthusiast, I was fascinated by their applications in
physics as well as in other scientific disciplines. I found my love for
mathematics and science converge, and was determined to cultivate
this passion.

Ever since then, I began collecting results and solutions to vari-
ous problems in the evaluation of integrals and series. It was only
about a year ago, due to a suggestion of one of my close friends,
that I thought about compiling my results into a cohesive curricu-
lum. I remembered my early days in doing these sorts of problems,
and my frustration at the lack of quality resources. It was then
that I became determined to write this book!

After I began writing the book, I began wondering how many indi-
viduals were genuinely interested in this type of mathematics. As
an experiment, I set up a mathematics Instagram account by the
name of daily_math_ to test the reaction to some of the book’s
problems. After an overwhelmingly positive response, I was more
motivated than ever to finish this book! At the time of the pub-
lishing of this book, the account has garnered over 40,000 followers
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globally, from middle school students to mathematics PhD’s.

Proof of (1)

This integral is truly special to me, as it marked the beginning of a
period of immense investment into my passion, mathematics. Thus,
I have compiled a list of proofs that I derived over the years. Even
though all these proofs were arrived at independently, they exist in
the literature since this integral is rather common.

Figure 1: Graph of the integrand of (1)

Proof 1. We will begin by splitting this integral from −1 to 0 and
from 0 to 1 to get:

I =

∫ 1

−1

√
1 + x

1− x
dx

=

∫ 0

−1

√
1 + x

1− x
dx+

∫ 1

0

√
1 + x

1− x
dx
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Using the substitution x→ −x on the first integral,

I = −
∫ 0

1

√
1− x
1 + x

dx+

∫ 1

0

√
1 + x

1− x
dx

=

∫ 1

0

(√
1− x
1 + x

+

√
1 + x

1− x

)
dx

=

∫ 1

0

(1− x) + (1 + x)√
(1− x)(1 + x)

dx

= 2

∫ 1

0

1√
1− x2

dx (2)

Since

d arcsinx

dx
=

1√
1− x2

We have:

I = 2[ arcsinx]10

= π

An alternate way to compute (2) is by the substitution x = sinu, dx =
cosu du:

∫ arcsin 1

arcsin 0

cosu√
1− sin2 u

du

=

∫ arcsin 1

arcsin 0
du
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= arcsin 1− arcsin 0 =
π

2

�

Proof 2. Consider multiplying (1) by
√

1 + x√
1 + x

I =

∫ 1

−1

1 + x√
1− x2

dx

=

∫ 1

−1

1√
1− x2

dx+

∫ 1

−1

x√
1− x2

dx

For the second integral, we let u = 1− x2, −du
2 = x dx to get:

I = π − 1

2

∫ 0

0

1√
u

du︸ ︷︷ ︸
=0

Which can be easily argued from the fact that the integrand in the
second integral is an odd function on the interval (−1, 1).
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Figure 2: Graph of y =
x√

1− x2
on (−1, 1)

We therefore obtain:

I = π

Proof 3. Consider the integral reflection property,

∫ b

a
f(x) dx =

∫ b

a
f(a+ b− x) dx

Applying that to (1) gives:

I =

∫ 1

−1

√
1− x
1 + x

dx (3)

Adding (3) and (1) gives:
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2I =

∫ 1

−1

(√
1− x
1 + x

+

√
1 + x

1− x

)
dx

=

∫ 1

−1

2√
1− x2

dx

= 2( arcsin(1)− arcsin(−1)) = 2π

Therefore,

I = π
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Preface

What is the value of this integral?

∫ 1

0
x2 dx

Hopefully, you calculated the correct value of 1
3 . Now, what about

this one?

∫ π
2

0
ln(sinx) dx

Well, that was quite a jump in difficulty. If your pencil is already
out, trying out your every tool, then this book is for you! However,
if you are perplexed as to why anyone cares about the evaluation of
this integral, then this book is for you as well!

The complete solution to the integral above can be found in (2.2).
However, the value has little importance. Rather, it is the tech-
niques and methods that are employed that are worth attention. If
problems like these give you a kick, then you are in for a good ride.
If not, then by part 4 of this book, you will see the importance of
the techniques used to answer such questions!

I have written this book with two types of readers in mind: 1) math-
ematical enthusiasts who love a challenging problem, and 2) physics,

23
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chemistry, and engineering majors. In this book, I aim to use the
methods introduced in a standard two-semester calculus course to
develop both problem solving skills in mathematics and the mathe-
matical sciences.

The examples given often have very differing solutions, some of
marvelous ingenuity and some that are rather standard. This is
done on purpose, as it ultimately benefits readers to see multiple
perspectives on similar problems. From u−substitutions to clever
interchanges of integration and summation, various methods will
be presented that can be used to solve the same problems. In order
to make this book accessible to a larger base of students, contour
integration is not included in the book.

It is worth noting that this is not an elementary calculus book,
although the first chapters are there as a refresher for those who
need it. A key difference between this book and other mathematics
books that attempt to address a similar topic is that it is written
with the reader in mind. Rarely would you need to struggle through
proving a non-trivial statement that was previously declared as
"trivial and left to the reader." Moreover, instead of the normal
theorem-focused advanced mathematics book, I aim to minimize
the number of techniques and methods and instead focus on exam-
ples.

In writing this book, I intended to make it as self-contained as pos-
sible. The various identities and theorems used in this book are
often proved in the book, and the scientific concepts behind each
application are explained and elaborated upon. Moreover, for the-
orems that need an extensive mathematics background, I aimed to
simplify and translate their statements into the book’s area of con-
cern as best as possible without losing key details.

Even though this book is heavily mathematical, almost 100 pages
are dedicated to applications of the techniques explored in the book.
The applications are broad and include various topics of concern in
the sciences and engineering. Many of the problems in this book,
particularly those in chapter 8, are included simply because they
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are elegant results and develop the problem-solving skills of the
reader. However, a few of the integrals and series, and certainly all
of the methods employed, have wide applications in many science
and engineering fields.

In the first two chapters, I introduce Mathematica as a way to nu-
merically or symbolically verify the correctness of a result. This is
done to familiarize the reader with Mathematica syntax so they are
able to employ it on their own in later chapters.

In addition to almost one hundred fully worked out examples, there
are exercise problems for the reader at the end of each chapter.
Generally, these problems get progressively harder by number. How-
ever, all these problems involve the same techniques used in the
chapter they are included in! A few challenge problems are scat-
tered throughout the book to engage the more experienced reader.

The answers to these exercise problems are all included at the end
of the book. There is a high likelihood that I will compile a list of
solutions to these problems in a solutions manual to be published a
few months after the book’s launch.

Enjoy!

Hamza Alsamraee,
Centreville High School

A Note on the Originality of the Results

I have tried to cite results attributed to well-known mathemati-
cians to the best of his ability. However, it is virtually impossible to
check the originality of all the results in this book. Many are clas-
sic results, and a few are more unusual. To the best of my knowl-
edge, many of the integrals and series in this book will be exposed
to the literature for the first time. I do not claim originality, but I
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do claim authenticity.
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30 CHAPTER 1. DIFFERENTIAL CALCULUS

This chapter will serve as a review of differential calculus, which
will be used throughout the book, especially in chapter 3. In this
chapter, we will also delve into elementary as well as advanced lim-
its, giving a glimpse into the later chapters of the book. We will
begin with the epsilon-delta definition of the limit and transition
into the evaluation of limits. After all, what better way is there to
start a calculus book other than to define the limit?

1.1 The Limit

We shall define the limit as the following (epsilon-delta definition):

Definition

Let f (x) be a function defined on the interval (a, b), except
possibly at x0, where x0 is in the interval i.e. a < x0 < b
then the limit is lim

x→x0
f (x) = L if for every number ε > 0

there exists a δ > 0 such that∣∣f (x)− L
∣∣ < ε whenever 0 < |x− x0| < δ (1.1)

For all x.

This is a formalization of the limit which turns our rather informal
notion of the limit to a rigorous one. Instead of using broad terms
such as f(x) gets "close" to L as x gets "close" to x0, this defini-
tion allows us to rigorously discuss limits.

The theorem originated from the French mathematician and physi-
cist Augustin-Louis Cauchy and was modernized by the German
mathematician Karl Weierstrass. This marked an interesting time
in the history of mathematics, representing its move towards rigor.
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x

y

δ δ

x0

ε
ε

L

Figure 1.1: A visualization of the epsilon-delta definition of the
limit

"...Since Newton the limit had been thought of as a bound
which could be approached closer and closer, though not
surpassed. By 1800, with the work of L’Huilier and Lacroix
on alternating series, the restriction that the limit be one-
sided had been abandoned. Cauchy systematically translated
this refined limit-concept into the algebra of inequalities, and
used it in proofs once it had been so translated; thus he gave
reality to the oft-repeated eighteenth-century statement that
the calculus could be based on limits." - American mathe-
matician Judith Grabinera

aGrabiner, Judith V. (March 1983), "Who Gave You the Epsilon?
Cauchy and the Origins of Rigorous Calculus" , The American Math-
ematical Monthly, 90 (3): 185–194, doi:10.2307/2975545, JSTOR
2975545

This formulation will not be used extensively in this book, but is
nonetheless widely used in analysis. Specifically, it is employed
heavily in proving the continuity of a function.
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Definition

A function f is said to be continuous at x0 if it is both de-
fined at x0 and its value at x0 equals the limit of f(x) as x
approaches x0, i.e.

lim
x→x0

f(x) = f(x0)

Consequently, f(x) is said to be continuous on some interval (a, b)
if it is continuous for every x0 belonging to that interval.

Let us begin with an easy first example!

Example 1: Prove that lim
x→0

x2 = 0 using the epsilon-delta defini-
tion of a limit.

Solution
In this case both L and x0 are zero. We start by letting ε > 0.
According to the (ε, δ) definition of the limit, if limx→0 x

2 = 0 we
will need to find some other number δ > 0 such that

∣∣x2 − 0
∣∣ < ε whenever 0 < |x− 0| < δ

Which gives us

x2 < ε whenever 0 < |x| < δ

Starting with the left inequality and taking the square root of both
sides we get

|x| <
√
ε

This looks very similar to the right inequality, which drives us to
set
√
ε = δ. We now need to prove that our choice satisfies

∣∣x2∣∣ < ε whenever 0 < |x| <
√
ε
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Starting with the right inequality with the assumption that 0 <
|x| <

√
ε

∣∣∣x2∣∣∣ = |x|2 <
(√
ε
)2

= ε

Which gives us

∣∣∣x2∣∣∣ < ε

This is exactly what we needed to show! In conclusion, we have
shown that for any ε > 0 we can find a δ > 0 such that

∣∣x2 − 0
∣∣ < ε whenever 0 < |x− 0| < δ

Which proves our original supposition that

lim
x→0

x2 = 0

Example 2: Prove that lim
x→0

sin (x)

x
= 1 using the epsilon-delta

definition of a limit.

Solution

To start off, we will make use of the unit circle to derive some iden-
tities. Consider figure 1.2.
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x

y

−1 −1
2

1

−1

−1
2

1
2

1

α

sinα

cosα

tanα

Figure 1.2: The unit circle. Figure generated using TikZ software

Figure 1.3: Points B,C lie on the unit circle
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Now, consider figure 1.3. Using the basics of the unit circle, we can
say that point C has a y−coordinate equal to sinx and point A has
a y−coordinate equal to tanx. Now, consider triangle 4OCB and
triangle 4OAB where O is the origin. 4OCB has area is 1

2 sinx
while 4OAB has area 1

2 tanx.

Moreover, the area of the sector formed by x is x
2 (x is measured in

radians). We now have the inequality

1

2
sinx ≤ x

2
≤ 1

2
tanx (1.2)

Dividing (1.2) by 1
2 sinx,

1 ≤ x

sinx
≤ 1

cosx

Taking the reciprocal,

cosx ≤ sinx

x
≤ 1

Since sinx
x and cosx are even functions, this inequality holds for

any non-zero x on the interval
(
−π

2 ,
π
2

)
. This leads us to

∣∣∣∣sin (x)

x
− 1

∣∣∣∣ < 1− cos (x) (1.3)

We can then use the trigonometric identity

cos(2x) = 1− 2 sin2 x

To obtain that 1 − cos (x) = 2sin2
(
x
2

)
< x2

2 where the inequality
holds because of (1.2). (1.3) is then transformed into∣∣∣∣sin (x)

x
− 1

∣∣∣∣ < x2

2
(1.4)
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We proceed to let δ =
√
ε which gives us

|x− 0| < δ =
√
ε

Plugging back into (1.4),∣∣∣∣sin (x)

x
− 1

∣∣∣∣ < x2

2
<

√
ε2

2
< ε

Which then proves the limit by showing that for any ε > 0 we can
find a δ > 0 such that

∣∣∣ sin (x)
x − 1

∣∣∣ < ε whenever 0 < |x− 0| < δ

1.1.1 L’Hopital’s Rule

Theorem

L’Hopital’s rule is one of the most widely known limit prop-
erties. It states that if two functions f and g are differen-
tiable on an open interval I, with an exception made for a,
and the limit of their quotient takes an indeterminate form
such as 0

0 or ∞∞ , the limit of their quotient can be expressed
as

lim
x→a

f (x)

g (x)
= lim

x→a

f ′ (x)

g′ (x)

Given that g′ (x) 6= 0 and the RHS exists.

The rule is named after the 17th-century French mathematician
Guillaume de L’Hopital. Even though the rule is often attributed
to L’Hopital, the theorem was first introduced to him in 1694 by
the Swiss mathematician Johann Bernoulli. This rule simplifies
many limits and sometimes is needed more than once. Again, we
can start with an easy problem to get the gist of how to use L’Hopital’s
rule.
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Example 3: Find the value of lim
x→∞

xe−x

Solution
We will first need to establish a non-constant denominator. This
is because if our denominator is constant, its derivative will be 0.
There are two simple choices

e−x

1
x

Or
x

ex

We can see that the latter choice is better as the first will produce
an even more complicated result when L’Hopital’s rule is applied.
Remember, when one key does not work, one must proceed to try
another one! As the problems in this book get harder, this idea be-
comes vital. Going back to our problem,

L = lim
x→∞

xe−x = lim
x→∞

x

ex

After applying L’Hopital’s rule we obtain:

L = lim
x→∞

1

ex

Now it is easy to see that

L = lim
x→∞

xe−x = 0

To numerically "confirm" our result, we can use Wolfram Desktop
(Or Mathematica):

In[1]:= Limit[x/E^x, x -> Infinity]

Out[1]= 0
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Example 4: Find lim
n→∞


(

1 + 1
n

)n
e


n

Figure 1.4: The graph shows limiting behavior approaching a value
near .6

Solution
Define

L = lim
n→∞


(

1 + 1
n

)n
e


n

We then have

lnL = lim
n→∞

n ln


(

1 + 1
n

)n
e

 = lim
n→∞

[
n2 ln

(
1 +

1

n

)
− n

]

We will proceed to transform the limit into one we can apply L’Hopital’s
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rule on, i.e. a fraction with a non-constant denominator:

lnL = lim
n→∞

n ln
(

1 + 1
n

)
− 1

1
n

After applying L’Hopital’s we obtain:

lnL = lim
n→∞

ln
(

1 + 1
n

)
−
n · 1

n2

1 + 1
n

− 1
n2

= lim
n→∞

ln
(

1 + 1
n

)
− 1

n+1

− 1
n2

Applying L’Hopital’s rule again and simplifying we obtain:

lnL = lim
n→∞

=
− 1
n(n+1)2

2
n3

= − lim
n→∞

n3

2n(n+ 1)2

We can already see that expanding the denominator would result in
a first term of 2n3. Thus,

lnL = −1

2

By using the ratio of the coefficients.

=⇒ L =
1√
e

Mathematica gives:

In[2]:= Limit[((1 + 1/x)^x/E)^x, x -> Infinity]

Out[2]= 1/Sqrt[E]
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1.1.2 More Advanced Limits

Example 5: Define the Riemann zeta function as ζ(s) =

∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+

1

4s
... Find lim

s→∞

(
ζ(s)− 1

) 1
s

Figure 1.5: A graph of y =
(
ζ(x)− 1

) 1
x

Solution
We know that the first term of the zeta function will always be

1

1s
= 1

Therefore,

L = lim
s→∞

(
ζ(s)− 1

) 1
s



1.1. THE LIMIT 41

= lim
s→∞

(
1 +

1

2s
+

1

3s
+

1

4s
· · · − 1

) 1
s

= lim
s→∞

(
1

2s
+

1

3s
+

1

4s
· · ·
) 1
s

We proceed to factor out
1

2s

L = lim
s→∞

1

2

(
1 +

(
2

3

)s
+

(
2

4

)s
· · ·

) 1
s

As s → ∞, all terms inside the parentheses with s as an exponent
will approach zero. Therefore,

L = lim
s→∞

1

2
· 1

1
s

Now it is easy to see that

lim
s→∞

(
ζ(s)− 1

) 1
s =

1

2

Testing our result with Mathematica,

In[3]:= (Zeta[x]-1)1/x

Out[3]=
1
2

Example 6: Define the double factorial, which is usually denoted
! !, as

n! ! = n · (n− 2) · (n− 4) · · ·
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For even numbers, the last number to be multiplied by is 2, while
for odd numbers it is 1. For example,

6! ! = 6 · 4 · 2 = 48

5! ! = 5 · 3 · 1 = 15

Find lim
n→∞

(2n− 1)! !
√
n

(2n)! !
for n ∈ N

Figure 1.6: Using Mathematica’s ListLinePlot function, we can get
a graph of the sequence an = (2n−1)!!

√
n

(2n)!!

Solution
A double factorial , n! !, can be expressed using normal factorials.
The expressions for our case are as follows

(2n)! ! = 2n · n!

(2n− 1)! ! =
(2n)!

2n · n!
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By substituting the above expressions into our limit we obtain:

L = lim
n→∞

(2n)!
√
n

(n)!2 ·4n

Now, we will introduce Stirling’s approximation.

Theorem

Stirling’s approximation, or Stirling’s formula, is one of the
most common approximations for factorials. The general for-
mula is

ln k! = k ln k − k +O(ln k) (1.5)

Where Big O notation indicates that the LHS (Left-hand
side) describes the RHS’s (Right-hand side) limiting behav-
ior, i.e. as k → ∞. A more precise approximation, which is
derived from (1.5), is

n!∼
√

2πn

(
n

e

)n
(1.6)

Using (1.6) we have:

L = lim
n→∞

√
4πn(2n)2n · e2n

e2n · (2πn) · n2n · 22n
√
n

After simplifying, we are only left with

L = lim
n→∞

√
n · 4πn
2πn

= lim
n→∞

2n
√
π

2πn

=⇒ L =
1√
π
≈ .56419
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We can test our result with Mathematica. Unfortunately, Mathe-
matica is unable to predict a value due to the computational heav-
iness of the factorial. However, evaluating our sequence for n =
1, 000, 000 gives us ≈ .56419, so we can be confident in our result.

Example 7: Define the nth Fibonacci number as Fn = Fn−1 +Fn−2

where F1 = F2 = 1. Find lim
n→∞

Fn+1

Fn
.

Solution
We start by noting that through the definition of the Fibonacci se-
quence we have

Fn+1 = Fn + Fn−1 =⇒ Fn+1

Fn
= 1 +

Fn−1
Fn

Define
an =

Fn+1

Fn
Then,

an = 1 +
1

an−1
Taking the limit of both sides,

lim
n→∞

an = lim
n→∞

(
1 +

1

an−1

)
Since both the limits of the RHS and LHS exist we can let limn→∞ an =
x to get

x = 1 +
1

x

x2 − x− 1 = 0

Using the quadratic formula and eliminating the negative solution
we obtain that

lim
n→∞

Fn+1

Fn
=

1 +
√

5

2
= φ
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Where φ denotes the famous golden ratio. To check our result, we
can use Mathematica’s built in Fibonacci sequence function:

In[4]:= Limit[Fibonacci[n+1]/Fibonacci[n],n->Infinity]

Out[4]=
1
2

(1+
√
5)

1.2 The Derivative

Definition

The derivative of a function f(x), denoted by f ′(x), gives us
the instantaneous rate of change at a point (x, f(x)) by using
the concept of a limit. This is done by measuring the "slope"
over an infinitesimal interval, i.e. [x, x+ h].

f ′ (x) = lim
h→0

f (x+ h)− f (x)

h

Example 8: What is the derivative of the function f (x) = xn,
where n is a constant?

Solution

Many have already memorized the power rule, but let us prove it
here. Using the definition of a derivative,

d

dx
f (x) = lim

h→0

(x+ h)n − xn

h
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We now recall the binomial theorem which states that

(x+ a)n =
n∑
k=0

(
n

k

)
xn−kak

Therefore,
d

dx
f (x) = lim

h→0

∑n
k=0

(
n
k

)
xn−khk − xn

h

By expanding this expression, we can see that the first term, xn,
cancels out and we are left with

d

dx
f (x) = lim

h→0

nxn−1h+ n(n−1)
2! xn−2h2 + . . .

h

Which simplifies to

d

dx
f (x) = lim

h→0
nxn−1 +

n (n− 1)

2!
xn−2h1 + . . .

Notice that the degree of h increases. As h → 0, all terms but the
first approach 0. Thus,

d

dx
f (x) = nxn−1

1.2.1 Product Rule

Theorem

For two differentiable functions, the derivative of their prod-
uct can be stated as follows

d

dx
uv = u

d

dx
v + v

d

dx
u
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Example 9: Find lim
x→0

(
x

sin3 x
− 1

x2

)
.

Solution

The easiest way to go about this problem is using Maclaurin se-
ries, however we will save that for later chapters. We will attempt a
more basic approach by factoring the above expression.

L = lim
x→0

(
x

sin3 x
− 1

x2

)

= lim
x→0

(
x3 − sin3 x

x2 sin3 x

)

Now we will attempt to convert this into a product of multiple lim-
its. It is easy to see that x3−sin3 x = (x−sinx)(x2+x sinx+sin2 x).
Hence,

L = lim
x→0

(
x− sinx

sin3 x

)
· lim
x→0

(
x2 + x sinx+ sin2 x

x2

)

Both limits are 0
0 cases so we will proceed to apply L’Hopital’s rule.

L = lim
x→0

(
1− cosx

3 sin2 x cosx

)
· lim
x→0

(
2x+ sinx+ x cosx+ 2 sinx cosx

2x

)
Applying the rule again to the first limit,

L = lim
x→0

(
sinx

6 sinx cos2 x− 3 sin3 x

)
· lim
x→0

(
2x+ sinx+ x cosx+ 2 sinx cosx

2x

)
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One last round to both limits!

L = lim
x→0

(
cosx

6 cos3 x− 21 sin2 x cosx

)
· lim
x→0

(
2 + 2 cosx− x sinx+ 2(cos2 x− sin2 x)

2

)

Now the limit is simplified to an easy plug-in. Our limit is there-
fore:

L =
1

6
· 3 =

1

2

Evaluating our limit using Mathematica,

In[5]:= Limit[x/Sin[x]^3 - 1/x^2, x -> 0]

Out[5]=
1
2

1.2.2 Quotient Rule

Theorem

Let f(x) = g(x)
h(x) where both h and g are differentiable and

h(x) 6= 0. The derivative of f(x) is then

f ′(x) =
g′(x)h(x)− h′(x)g(x)

[h(x)]2

This rule can be found from the product rule by setting u = g(x)
and v = 1

h(x) . However, it is helpful to know on its own.

Example 10: Find d
dx tanx
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Solution

We know that
tanx =

sinx

cosx

Applying the quotient rule,

(tanx)′ =
(sinx)′ cosx− (cosx)′ sinx

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x

We then have by the definition of secx,

d

dx
tanx = sec2 x

1.2.3 Chain Rule

Theorem

If g(x) is differentiable at x = a and f(x) is differentiable at
x = g(a), then the derivative of f(g(x)) at x = a is:

d

dx
f(g(x))

∣∣∣
x=a

= f ′(g(a)) · g′(a)

After a basic review, we now can start delving into more advanced
derivatives. Let us get started with an interesting derivative!

Example 11: Find the derivative of f (x) = xx
x at x = 1.

Solution
We will approach this problem using logarithmic differentiation. We
first set h (x) = xx and then take the natural logarithm of both
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Figure 1.7: Graph of y = xx
x

sides,
lnh (x) = x lnx

Differentiating both sides using the chain rule,

h′ (x)

h (x)
= lnx+ 1→ h′ (x) = xx (lnx+ 1)

We can now return to our original function and take the natural
logarithm of both sides to get:

ln f (x) = xx lnx

Differentiating both sides,

f ′ (x)

f (x)
=

d

dx
(xx) lnx+ xx−1

= xx
(

1

x
+ ln2 x+ lnx

)
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Plugging in x = 1,

f ′ (1)

1
= 1→ f ′ (1) = 1

Checking with Mathematica,

In[6]:= f[x_]:=xx
x

f′′′[1]

Out[6]= 1

Example 12: Evaluate
dπ

dxπ
xπ at x = π

Solution
You might be wondering what a πth derivative even is, or if it is
even valid mathematically! This notion of generalizing the deriva-
tive operator is the basis of an entire branch of mathematics, frac-
tional calculus. The first appearance of a fractional derivative
is in a letter written to l’Hôpital by the German polymath Got-
tfried Wilhelm Leibniz in 16951. The theory and foundations of the
subject were introduced by the likes of the French mathematician
Joseph Liouville in the 19th century. In the late 19th century, the
electrical engineer Oliver Heaviside introduced their practical use in
electrical transmission line analysis2.

To solve this problem, let’s look at the function f (x) = xa. By the
power rule, we can deduce that the first derivative is

f ′ (x) = axa−1

1Katugampola, Udita N. (15 October 2014). A New Approach To Gener-
alized Fractional Derivatives. Bulletin of Mathematical Analysis and Applica-
tions. 6 (4): 1–15. arXiv:1106.0965. Bibcode:2011arXiv1106.0965K.

2Bertram Ross (1977). The development of fractional calculus 1695-1900.
Historia Mathematica. 4: 75–89. doi:10.1016/0315-0860(77)90039-8
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Applying differentiation repeatedly gives us a pattern, namely that
the nth derivative is

dn

dxn
xa =

a!

(a− n) !
xa−n

We can extend this definition using the Gamma function.

Definition

The Gamma function, usually denoted by Γ(·), extends the
domain of the factorial function into C with the exception of
non-positive integers.

Γ(n) = (n− 1)!

It is mainly defined by a convergent improper integral. How-
ever, the product definition due to Weirstrass is also useda.

Γ (z) =

∫ ∞
0

tz−1e−tdt =
e−γz

z

∞∏
k=1

(
1 +

z

k

)−1
ez/k (1.7)

aDavis, P. J. (1959). Leonhard Euler’s Integral: A Historical Profile
of the Gamma Function". American Mathematical Monthly. 66 (10):
849–869. doi:10.2307/2309786. JSTOR 2309786
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Definition

The Euler-Mascheroni constant, usually denoted as γ, is de-
fined as the limiting difference between the harmonic sum
and the natural logarithm:

γ = lim
k→∞

− ln k +
k∑

n=1

1

n

 ≈ 0.577216 (1.8)

Note: The partial harmonic sum
∑k

n=1
1
n is sometimes also

written as Hk (Harmonic numbers).

Since the argument of the Gamma function is shifted down by 1,
we can rewrite the nth derivative as

dn

dxn
xa =

Γ (a+ 1)

Γ (a− n+ 1)
xa−n

After plugging in a = n = π we get:

dπ

dxπ
xπ =

Γ (π + 1)

Γ (1)
x0 = Γ (π + 1) ≈ 7.188

Where we used Mathematica to obtain the numerical approxima-
tion. Unfortunately, Mathematica has no built in fractional deriva-
tive function to date.

Example 13: Let f(x) =
x

x+ x
x+ x

x+..

. Find lim
x→∞

f ′(x).

Solution
We will first find an expression for the derivative and then take the
limit. Notice that

f(x) = y =
x

x+ x
x+ x

x+..

=
x

x+ y
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Therefore,
xy + y2 = x

y2 + xy − x = 0

This is a quadratic equation in y. By the quadratic formula we ob-
tain:

y =
−x±

√
x2 + 4x

2

Since we know that y > 0 for all x > 0 we will ignore the negative
value. Hence,

y =
−x+

√
x2 + 4x

2

To get our desired derivative expression we will differentiate to get:

dy

dx
=

1

2

(
2x+ 4

2
√
x2 + 4x

− 1

)

=
1

2

(
x+ 2√
x2 + 4x

− 1

)
Taking the limit we obtain:

lim
x→∞

f ′(x) =
1

2
lim
x→∞

(
x+ 2√
x2 + 4x

− 1

)

=
1

2
lim
x→∞

(
x+ 2√
x2 + 4x

)
− 1

2

=
1

2
lim
x→∞

(
x+ 2√

(x+ 2)2 − 4

)
− 1

2

We can see that the denominator tends to x + 2 as x → ∞. Our
limit is then simply

lim
x→∞

f ′(x) =
1

2
− 1

2
= 0
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Example 14: Find d2x
dy2

in terms of d2y
dx2

and dy
dx .

Solution
Define

g(x) = f−1(x)

With g(x) = y. Then by the basic properties of inverse functions
we have

f(g(x)) = x

Differentiating both sides with respect to x and using the chain
rule,

f ′(g(x)) · g′(x) = 1

f ′(g(x)) =
1

g′(x)

Differentiating once again we get:

f ′′(g(x)) · g′(x) = − g′′(x)(
g′(x)

)2
∴ f ′′(g(x)) = − g′′(x)(

g′(x)
)3

Expressing this in different notation,

d2x

dy2
= −

d2y
dx2(
dy
dx

)3

Example 15: Let a > 1 be a constant. What is the minimum
value of a where the curves f(x) = ax and g(x) = loga x are tan-
gent?

Solution
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We know that f and g are inverses, which means they are reflec-
tions of each other on the line y = x. Therefore, if they were to be
tangent their derivatives have to be both 1. We then have a system
of equations

ax1 ln a =
1

x1 ln a
= 1 (1)

ax1 = loga x1 (2)

Where (x1, x1) is the point of intersection. (1) and (2) are true
since f ′ = g′ = 1 at (x1, x1) and f = g at (x1, x1), respectively.
Substituting (2) into (1) we obtain:

loga x1 ln a = 1

Using base conversion,
lnx1 = 1

x1 = e

Thus,
1

e ln a
= 1

e ln a = 1

a = e
1
e

1.3 Exercise Problems

1) Prove the product rule using the limit definition of the deriva-
tive.
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2) Prove the chain rule using the limit definition of the derivative.

3) Prove the quotient rule using logarithmic differentiation (See
Example 11).

4) Find lim
n→∞

n1/n

5) Evaluate lim
x→0+

xx

6) Find lim
x→0+

xx
x − xx

7) Evaluate lim
x→0

x2 sin
(

1
x

)
+ x

x
√

1 + x− e

8) Let f ′(x) = f−1(x). If f(2019) = 2019, what is f ′′(2019)?

9) Evaluate lim
k→∞

ln
(
kk

k!

)
k

10) Evaluate lim
n→∞

(4n3n)(
2n
n

)1/n

(Bonus question: Generalize it!)

11) Find lim
x→∞

x2

2x+ 1
sin

(
π

x

)
(Hint: See example 2 and use the

squeeze theorem)
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Theorem

Let (a, b) be an interval such that x0 ∈ (a, b). Let g, f , and h
be functions defined on (a, b), except possibly at x0. Suppose
that for every x ∈ (a, b) not equal to x0, we have:

g(x) ≤ f(x) ≤ h(x)

Also, suppose that

lim
x→x0

g(x) = lim
x→x0

h(x) = L

Then

lim
x→x0

f(x) = L



Chapter 2

Basic Integration

59



60 CHAPTER 2. BASIC INTEGRATION

In this chapter, we will explore and review basic integration tech-
niques such as u-substitution, integration by parts, partial fraction
decomposition, etc. We will try to apply these methods creatively
to a collection of elementary yet unique problems. With that in
mind, let’s get started!

Figure 2.1: The notation for the indefinite integral,
∫

, was intro-

duced by Leibniz in 1675. He adapted it from an archaic form of
the letter s, standing for summa (Latin for "sum" or "total").

2.1 Riemann Integral

Definition

For a function f(x) that is continuous on the interval [a, b],
we can divide the interval into n subintervals, each with
length ∆x, and from each interval choose a point xk. The
definite integral is then∫ b

a
f(x) dx = lim

n→∞

n∑
k=1

f(xk)∆x

This definition, provided by the German mathematician Bernhard
Riemann, expresses area as a combination of infinitely many vertically-
oriented rectangles, a technique known as Riemann sums. As the
rectangles get thinner (∆x→ 0), the total area of the rectangles
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approaches the value of the integral.

Perhaps the most advantageous aspect of the Riemann definition is
its easy visualization! Consider the graph of y = x2 in figure 2.2.
We will begin by estimating the integral, or area under the curve.

Figure 2.2: Graph of y = x2 on x ∈ [0, 1]

Since it is a nonstandard shape, we will approximate it using stan-
dard shapes, namely rectangles. We will start our approximation
with two subintervals, or two rectangles.
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Figure 2.3: Graph of the midpoint Riemann sums for y = x2 on
[0, 1] with only two subintervals

Note that this is a midpoint Riemann sum. Our thought experi-
ment here will work for any Riemann sum, since as the rectangles
get thinner and thinner, the difference between f(xk) of different
Riemann sums will approach 0.

Now, back to our thought experiment. We can see that there are
areas that our rectangles do not cover and some areas that our
rectangles add. To minimize these errors, we have to add more
rectangles! Let us now increase the number of subintervals from
2 to 10.

As one can see in figure 2.4, we now have a much better estimate
of integral, or the area under the curve. As we let the number of
subintervals approach ∞ (and consequently their width approach
0), this approximation will become an exact value for area!
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Figure 2.4: Graph of the midpoint Riemann sums for y = x2 on
[0, 1] with ten subintervals

However, the Riemann integral has its limitations, which are often
worked around by invoking the Lebesgue definition of integration.

2.2 Lebesgue Integral

The Lebesgue integral is another definition of the inte-
gral proposed in 1904 by the French mathematician Henri
Lebesgue. The formal definition of the Lebesgue integral
involves measure theory, which is beyond the scope of the
book. A helpful intuitive picture of the Lebesgue integral can
be given by thinking of the Lebesgue integral as taking the
areas of horizontal rectangles instead of the vertical rectan-
gles one encounters in the Riemann definition.
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In describing his method, Lebesgue said:1

I have to pay a certain sum, which I have collected in my
pocket. I take the bills and coins out of my pocket and give
them to the creditor in the order I find them until I have
reached the total sum. This is the Riemann integral. But I
can proceed differently. After I have taken all the money out
of my pocket I order the bills and coins according to iden-
tical values and then I pay the several heaps one after the
other to the creditor. This is my integral.

In essence, the Lebesgue integral approximates the total area by
dividing it into horizontal strips instead of the vertical strips in the
Riemann definition. The Lebesgue integral asks "for each y-value,
how many x-values produce this value?"

The Lebesgue integral more or less became the "official" integral of
research mathematics. However, rarely do engineers and scientists
employ this definition. In most scenarios, the Riemann definition
suffices. A funny quote is given by the American electrical engineer
and computer scientist Richard Hamming who declared confidently

...for more than 40 years I have claimed that if whether an
airplane would fly or not depended on whether some function
that arose in its design was Lebesgue but not Riemann inte-
grable, then I would not fly in it. Would you? Does Nature
recognize the difference? I doubt it!

See footnote for the full article2.

1Gowers, T., Barrow-Green, J., Leader, I. (2008). The Princeton compan-
ion to mathematics. Princeton, NJ: Princeton University Press.

2Hamming, R. W. (1998). Mathematics on a Distant Planet. The American
Mathematical Monthly, 105(7), 640. doi: 10.2307/2589247
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2.3 The u-substitution

We start by introducing an extremely useful identity.

Proposition. Let f(x) be an integrable function. We then have∫ b

a
f (x) dx =

∫ b

a
f (a+ b− x) dx (2.1)

Proof. Let

I =

∫ b

a
f (x) dx

Also, let x = a+ b− t, dx = −dt. This then transforms I into:

I =

∫ a

b
f (a+ b− t) (−dt)

=

∫ b

a
f (a+ b− t) dt

Rewriting using x,

I =

∫ b

a
f (a+ b− x) dx

This formula is akin to "integrating backwards." It will be used ex-
tensively throughout this book, and is especially useful for trigono-
metric integrals. To start the chapter off, we will begin with an ele-
gant result involving (2.1).

Example 1: Evaluate
∫ π

0

x sinx

1 + cos2 x
dx
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Figure 2.5: Graph of y = x sinx
1+cos2 x

Solution

Using (2.1) gives:

I =

∫ π

0

[
(π − x) sin (π − x)

1 + cos2 (π − x)

]
dx

Adding our original integral with the transformed integral above,

2I =

∫ π

0

[
x sinx

1 + cos2 x
+

(π − x) sin (π − x)

1 + cos2 (π − x)

]
dx

I =
1

2

∫ π

0

[
x sinx

1 + cos2 x
+

(π − x) sin (π − x)

1 + cos2 (π − x)

]
dx

We can simplify by using the identities sin (π − x) = sinx,
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cos2 (π − x) = cos2 x:

I =
1

2

∫ π

0

[
π sinx

1 + cos2 x

]
dx

We now proceed to make the u-substitution u = cosx,du = − sinx dx

π

2

∫ −1
1

−du

1 + u2
=

[
π

2
arctanu

]1
−1

=
π2

4

Evaluating our integral with Mathematica,

In[7]:=

∫ πππ
0

x Sin[x]

1+Cos[x]2
dx

Out[7]=
πππ2

4

Example 2: Evaluate
∫ π

2

0
ln (sinx)dx

Solution
We will use a unique approach to this problem utilizing our reflec-
tion identity, (2.1).

I =

∫ π
2

0
ln

(
sin

(
π

2
− x
))

dx =

∫ π
2

0
ln (cosx) dx

Adding our original and transformed integral,

2I =

∫ π
2

0
ln (sinx) dx+

∫ π
2

0
ln (cosx) dx
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Figure 2.6: Graph of y = ln (sinx)

=

∫ π
2

0
ln (cosx sinx) dx

Using 2 sinx cosx = sin (2x), we have:

2I =

∫ π
2

0
ln

(
2 cosx sinx

2

)
dx =

∫ π
2

0
ln (sin 2x)− ln 2 dx

=

∫ π
2

0
ln (sin 2x) dx− π ln 2

2

We proceed to make the u-substitution u = 2x , dx = du
2 which

transforms the above expression to:

2I =
1

2

∫ π

0
ln (sinu) du− π ln 2

2

The period of sin 2x is 2π
2 = π from which we can deduce that:

1

2

∫ π

0
ln (sinu) du =

∫ π
2

0
ln (sinu) du
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Therefore,

2I =

∫ π
2

0
ln (sinu) du︸ ︷︷ ︸

I

−π ln 2

2

=⇒ 2I = I − π ln 2

2∫ π
2

0
ln(sinx) dx = −π ln 2

2
(2.2)

Mathrmatica gives the same answer,

In[8]:=

∫ πππ

2
0

Log[Sin[x]]dx

Out[8]= -
1
2
πππ Log[2]

Example 3: Evaluate
∫ π

0

x sinx(
cos2 x+ 1

)2dx

Solution
Using (2.1),

I =

∫ π

0

(π − x) sin (π − x)(
cos2(π − x) + 1

)2dx

=

∫ π

0

π sin (x)(
cos2(x) + 1

)2dx−
∫ π

0

x sin (x)(
cos2(x) + 1

)2dx︸ ︷︷ ︸
I

=⇒ I =
π

2

∫ π

0

sin (x)(
cos2(x) + 1

)2dx
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Figure 2.7: Graph of y = x sinx

(cos2 x+1)
2

We apply the intuitive u-substitution u = cosx , du = − sinx dx.
In doing so we get:

I =
π

2

∫ 1

−1

du(
u2 + 1

)2
Substituting again with u = tanx,du = sec2(x) dx gives

I =
π

2

∫ π
4

−π
4

sec2 x

(sec2 x)2
dx

=
π

2

∫ π
4

−π
4

cos2 x dx

Using

cos2 x =
1 + cos 2x

2

Then gives:

I =
π

4

(∫ π
4

−π
4

dx+

∫ π
4

−π
4

cos(2x) dx

)
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Which can be easily evaluated to

I =
π

4

(
π

2
+ 1

)

I =
π2

8
+
π

4

Let’s see what Mathematica gives,

In[9]:=

∫ πππ
0

xSin[x]

(1+Cos[x]2)
2 dx

Out[9]=
1
8
π (2+π)

Which, if expanded, equals π2

8 + π
4 .

Example 4: Evaluate
∫ 1

0
ln
(
Γ(x)

)
dx

Solution

It is worth noting that this result is due to the well-known Swiss
polymath Leonhard Euler. We start our solution by using (2.1),

I =

∫ 1

0
ln
(
Γ(x)

)
dx =

∫ 1

0
ln
(
Γ(1− x)

)
dx

We will now introduce Euler’s reflection formula:
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Figure 2.8: Graph of the y = ln Γ(x)

Theorem

The infamous Euler’s reflection formula is given by:

Γ(x)Γ(1− x) = π cscπx (2.3)

Where x /∈ Z. See (9.3) for proof.

Taking the natural logarithm of both sides in (2.3) gives

ln Γ(x) + ln Γ(1− x) = lnπ + ln csc (πx) = lnπ − ln sin (πx)

Therefore,

2I =

∫ 1

0
ln
(
Γ(x)

)
+ ln

(
Γ(1− x)

)
dx =

∫ 1

0
lnπ − ln sin (πx) dx

2I =

∫ 1

0
lnπ dx−

∫ 1

0
ln sin (πx) dx
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We proceed to substitute u = πx,du = πdx to get:

2I = lnπ − 1

π

∫ π

0
ln sin (u)du

It is easy to see that ln (sinu) is symmetric around u = π
2 . Using

this symmetry, we can write∫ π

0
ln sin (u) du = 2

∫ π
2

0
ln sin (u) du

We have already evaluated the latter integral in (2.2). Hence,

2I = lnπ − 2

π
· −π ln 2

2

= lnπ + ln 2

Finally we obtain ∫ 1

0
ln
(
Γ(x)

)
dx =

ln 2π

2
(2.4)

Evaluating with Mathematica,

In[10]:=

∫ 1

0
Log[Gamma[x]]dx

Out[10]=
1
2

Log[2 π]

Example 5: Define I1 =

∫ ∞
0

1

1 + x13
dx and I2 =

∫ ∞
0

1

13 + x13
dx

. Find
I2
I1
.

Solution
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Figure 2.9: Graph of the integrands in I1 and I2

Since ∫ ∞
0

e−axdx =
1

a

We can write I1 as a double integral.

I1 =

∫ ∞
0

1

1 + x13
dx =

∫ ∞
0

∫ ∞
0

e−y(1+x
13)dy dx

Let t = yx13,dt = 13x12y dx, which then transforms I1 into:

I1 =
1

13

∫ ∞
0

e−tt−
12
13 dt ·

∫ ∞
0

e−yy−
1
13 dy (2.5)

We now will use the same substitution on I2. In doing so we ob-
tain:

I2 =

∫ ∞
0

∫ ∞
0

e−y(13+x
13)dy dx

=
1

13

∫ ∞
0

e−tt−
12
13 dt

∫ ∞
0

e−13yy−
1
13 dy
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Notice that the only difference is the coefficient of y in the expo-
nential. To get our desired ratio without directly evaluating these
integrals, we will change the coefficient of y in I2 through the u-
substitution u = 13y, du = 13dy.

I2 =
1

13 · 13

∫ ∞
0

e−tt−
12
13 dt

∫ ∞
0

e−u
(
u

13

)− 1
13

du

=
13

1
13

13

(
1

13

∫ ∞
0

e−tt−
12
13 dt

∫ ∞
0

e−uu−
1
13 du

)
The expression in parentheses is identical to (2.5). Thus,

I2 = 13−
12
13 I1 =⇒ I2

I1
= 13−

12
13

We can see if Mathematica can generate an exact value,

In[11]:=

∫ ∞∞∞
0

1

13+x13
dx∫ ∞∞∞

0

1

1+x13
dx

Out[11]=
1

1312/13

Example 6: Evaluate
∫ 1

0

ln
(

cos
(
πx
2

))
x2 + x

dx

Solution
We will split the integrand using partial fractions since
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Figure 2.10: Graph of y =
ln
(
cos (πx2 )

)
x2+x

x2 + x = (x)(x+ 1)

∴ I =

∫ 1

0

ln cos
(
πx
2

)
x

dx−
∫ 1

0

ln cos
(
πx
2

)
x+ 1

dx

Using the trigonometric identity 2 sinx cosx = sin 2x we can derive
that cos

(
πx
2

)
= sin (πx)

2 sin (πx2 )
. Thus,

I =

∫ 1

0

ln

(
sin (πx)

2 sin (πx2 )

)
x

dx−
∫ 1

0

ln cos
(
πx
2

)
x+ 1

dx

By the reflection property of integration,

I =

∫ 1

0

ln
(
sin (πx)

2

)
x

dx−
∫ 1

0

ln
(

sin
(
πx
2

))
x

dx−
∫ 1

0

ln cos
(
πx
2

)
x+ 1

dx
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=

∫ 1

0

ln
(
sin (πx)

2

)
x

dx︸ ︷︷ ︸
(1)

−
∫ 1

0

ln

(
sin
(
π(1−x)

2

))
1− x

dx︸ ︷︷ ︸
(2)

−
∫ 1

0

ln cos
(
πx
2

)
x+ 1

dx︸ ︷︷ ︸
(3)

We will proceed to substitute u = −x , du = −dx in (2)

I =

∫ 1

0

ln
(
sin (πx)

2

)
x

dx︸ ︷︷ ︸
(1)

−
∫ 0

−1

ln
(

cos
(
πu
2

))
u+ 1

du︸ ︷︷ ︸
(2)

−
∫ 1

0

ln
(

cos
(
πx
2

))
x+ 1

dx︸ ︷︷ ︸
(3)︸ ︷︷ ︸

Same integrand

Combining (2) and (3) we obtain

I =

∫ 1

0

ln
(
sin (πx)

2

)
x

dx︸ ︷︷ ︸
(1)

−
∫ 1

−1

ln
(

cos
(
πx
2

))
x+ 1

dx︸ ︷︷ ︸
(2*)

Now, we substitute u = 1 + x , du = dx into (2*)

I =

∫ 1

0

ln
(
sin (πx)

2

)
x

dx−
∫ 2

0

ln
(

sin
(
πu
2

))
u

du

Now, since our integrands are not defined at 0, we need to take the
limit as the lower bound approaches 0. Notice that if we were at-
tempting to evaluate the indefinite integral, this step would not
be needed at this time. However, it is not possible to derive the
above indefinite integrals (anti-derivatives) in standard mathemati-
cal functions, so we have to go with the definite integral route.

I = lim
h→0

∫ 1

h

ln
(
sin (πx)

2

)
x

dx−
∫ 2

h

ln
(

sin
(
πx
2

))
x

dx


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= lim
h→0


∫ 1

h

ln
(
sin (πx)

)
x

dx︸ ︷︷ ︸
(1)

−
∫ 2

h

ln
(

sin
(
πx
2

))
x

dx︸ ︷︷ ︸
(2*)

−
∫ 1

h

ln 2

x
dx


Substituting again into (2*) with u = x

2 , du = dx
2

I = lim
h→0


∫ 1

h

ln
(
sin (πx)

)
x

dx︸ ︷︷ ︸
(1)

−
∫ 1

h
2

ln
(
sin (πu)

)
u

du︸ ︷︷ ︸
(2*)

+ ln 2 lnh


Combining (1) and (2*) we obtain:

I = lim
h→0

[
−
∫ h

h
2

ln
(
sin (πx)

)
x

dx+ ln 2 lnh

]
As x → 0 , sinx ≈ x. Since h → 0, we can use this in the above
integral to get

I = lim
h→0

[
−
∫ h

h
2

ln (πx)

x
dx+ ln 2 lnh

]

= lim
h→0

[
−
∫ h

h
2

ln (x)

x
dx−

∫ h

h
2

lnπ

x
dx+ ln 2 lnh

]
Our first integral above can be calculated using

∫
lnx

x
dx =

(lnx)2

2

Therefore,

I = lim
h→0

−1

2

[
(lnh)2 −

(
ln
h

2

)2
]
−

[
lnπ

(
lnh− ln

h

2

)]
+ ln 2 lnh


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= lim
h→0

[
−1

2

(
lnh+ ln

h

2

)(
lnh− ln

h

2

)
+ ln 2 lnh− lnπ ln 2

]

Where in the last line we used the identity a2 − b2 = (a+ b)(a− b).
Continuing with our solution,

I = lim
h→0

−1

2

(
ln
h2

2

)
(ln 2) + ln 2 lnh− lnπ ln 2


= lim

h→0

[
−1

2
(2 lnh− ln 2) (ln 2) + ln 2 lnh− lnπ ln 2

]
The terms containing h will cancel out so we are only left with:

I =
ln2 2

2
− ln 2 lnπ

Oh well, that was a lot of work! To be confident in our result, we
can check with Mathematica. Unfortunately, Mathematica only
provides a numerical answer. However, we can check the difference
between our value above and Mathematica’s numerical approxima-
tion,

In[12]:= N[
∫ 1

0

Log[Cos[
πππ x
2

]]

x2+x
dx]

-(
Log[2]2

2
-Log[ πππ] Log[2])

Out[12]= -8.881784197001252*10^-16

Here, N [·] denotes Mathematica’s numerical value function.
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Example 7: Evaluate
∫ 1

0

x lnx√
1− x2

dx

Figure 2.11: Graph of y = x lnx√
1−x2

Solution
Let u =

√
1− x2, du = − x√

1−x2 dx. Our integral is then

I = −
∫ 0

1
ln
√

1− u2 du

=
1

2

∫ 1

0
ln
(

1− u2
)

du

We can split I into two integrals using basic logarithm rules,

I =
1

2

∫ 1

0
ln (1 + u) + ln (1− u) du
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=
1

2

[∫ 1

0
ln (1 + u) du+

∫ 1

0
ln (1− u) du

]

=
1

2

[[
u lnu− u

]2
1
−
[
u lnu− u

]0
1

]

Since limu→0 u lnu = 0,

∴
∫ 1

0

x lnx√
1− x2

dx =
2 ln 2− 2

2
= ln 2− 1 (2.6)

Checking with Mathematica,

In[13]:=

∫ 1

0

xLog[x]√
1-x2

dx

Out[13]= -1+Log[2]

We saw how u-substitutions can make seemingly hard integrals sim-
ple. In the next section, we will see some other elementary ways to
solve integrals.
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2.4 Other Problems

Theorem

Integration by parts, also known as IBP, is one of the most
common integration techniques. It is derived from the prod-
uct rule,

(uv)′ = u′v + v′u

And is its analogue in integration. The rule states that∫
u dv = uv −

∫
v du (2.7)

For two continuous and differentiable functions u and v.

For definite integrals, we have

∫ b

a
u dv = [uv]ba −

∫ b

a
v du

This result can be extended to three functions, u, v, w:∫ b

a
uv dw =

[
uvw

]b
a
−
∫ b

a
uw dv −

∫ b

a
vw du

This technique was first discovered by the English mathematician
Brook Taylor, who also discovered Taylor series3.

Proof. Consider the statement of the product rule:

(uv)′ = u′v + v′u

3TAYLOR, B. (1715). Methodus Incrementorum directa et inversa. Londini:
Apud Gul. Innys.
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Define u = u(x) and v = v(x), i.e. u, v are functions of x. Integrat-
ing both sides with respect to x,

∫
(uv)′ =

∫
u′v + v′u

uv =

∫
u′v +

∫
v′u

Rearranging this formula gives:

∫
v′u = uv −

∫
u′v

Expressing this in Leibniz notation,

∫
u dv = uv −

∫
v du

This can be easily applied to definite integrals

∫ b

a
u dv = [uv]ba −

∫ b

a
v du

By the first fundamental theorem of calculus.

Now, let’s apply our skills!

Example 8: Find
∫ ∞
0

arcsin e−x dx

Solution

Sometimes it is more convenient to do a substitution in terms of
functions on both sides. In essence, the substitution form is:
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Figure 2.12: Graph of y = arcsin e−x

f(u) = g(x)

Instead of u = f−1
(
g(x)

)
. Also, the introduction of another vari-

able, namely u, is not necessary. One can do a direct substitu-
tion in the same variable. In this case, we would like to substi-
tute e−x → sinx. For the sake of ease, we can also write this as
e−x = sinu, e−xdx = − cosu du =⇒ dx = − cotu du and obtain
that we need to substitute dx → − cotx dx. As one gains more
practice with such procedures, it will become almost second nature!

I =

∫ π
2

0
x cotx dx

Using integration by parts with u = x,du = dx and dv = cotx dx, v =
ln sinx leads us to

I = [x ln sinx]
π
2
0 −

∫ π
2

0
ln sinx dx
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I =
π

2
ln 2

See (2.2) for the evaluation of the integral. We can check Mathe-
matica to verify our solution,

In[14]:=

∫ ∞∞∞
0

ArcSin[e-x]dx

Out[14]=
1
2
π Log[2]

Example 9: Find
∫

sin(2019x) sin2017 x dx

Solution
We will show that for any n,

In =

∫
sin(nx) sinn−2 x dx =

sinn−1 x sin
(
(n− 1)x

)
n− 1

+ C

We will start by splitting up n into n− 1 and 1

In =

∫
sin
(
(n− 1)x+ x

)
sinn−2 x dx

By using the fact that

sin(α+ β) = sinα cosβ + sinβ cosα

We obtain:

In =

∫
sin
(
(n− 1)x

)
cos(x) sinn−2 x+sinx cos

(
(n− 1)x

)
sinn−2 x dx
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=

∫
sin
(
(n− 1)x

)
cos(x) sinn−2 x+ cos

(
(n− 1)x

)
sinn−1 x dx

We proceed to multiply by n−1
n−1 to get

In =
1

n− 1

∫
sin
(
(n− 1)x

) (
(n− 1) cos(x) sinn−2 x

)
+ (n− 1) cos

(
(n− 1)x

)
sinn−1 x dx

Notice that (
sinn−1 x

)′
= (n− 1) cos(x) sinn−2 x

And (
sin
(
(n− 1)x

))′
= (n− 1) cos

(
(n− 1)x

)
Therefore,

In =
1

n− 1

∫
sin
(
(n− 1)x

)
(sinn−1 x)′+

(
sin
(
(n− 1)x

))′
sinn−1 x dx

The integrand is simply
(

sinn−1 x sin
(
(n− 1)x

))′
by the product

rule. Therefore,

In =
1

n− 1

∫ (
sin
(
(n− 1)x

)
sinn−1 x

)′
dx

=
sin
(
(n− 1)x

)
sinn−1 x

n− 1
+ C

We can now plug in our desired value, n = 2019
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Figure 2.13: Graph of the y =
n
√

sinn x+ cosn x for n = 1000

I2019 =
sin(2018x) sin2018 x

2018
+ C

Mathematica gives

In[15]:=

∫∫∫
Sin[2019 x] Sin[x]2017dx

Out[15]=
Sin[x]2018 Sin[2018 x]

2018

Example 10: Find lim
n→∞

∫ π
2

0

n
√

sinn x+ cosn x dx
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Solution
Let

A = lim
n→∞

n
√

sinn x+ cosn x = lim
n→∞

(
cosx n

√
1 + tann x

)
Where we factored out cosn x in the last step. Also, let

B = lim
n→∞

n
√

1 + tann x

=⇒ lnB = lim
n→∞

ln (1 + tann x)

n

Notice that when x ∈
[
0, π4

)
, tanx ∈ [0, 1). Hence, when x ∈

[
0, π4

)
,

we know that lnB = 0 and B = 1 since as n → ∞, tann x = 0.
On the other hand, when x ∈

[
π
4 ,

π
2

)
, tanx ∈ [1,∞). We can then

deduce that B =
n
√

tann x = tanx. Our integrand is then simply

B cosx =

{
cosx , x ∈

[
0, π4

)
cosx tanx = sinx , x ∈

[
π
4 ,

π
2

)
Even though tanx diverges at x = π

2 , we can see that

lim
x→π

2

A = lim
x→π

2

B cosx = 1

Therefore,

lim
n→∞

∫ π
2

0

n
√

sinn x+ cosn x dx

=

∫ π
4

0
cosx dx+

∫ π
2

π
4

sinx dx

= [ sinx]
π
4
0 − [ cosx]

π
2
π
4
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=
√

2

For n = 1000, Mathematica gives ≈ 1.414.

Example 11: Find an expression for
∫ ∞
0

1

1 + xn
dx for n > 1.

Figure 2.14: Graph of y = 1
1+xn for n = 2, 3, · · · , 7

Solution
We will express this integral as a double integral similar to what we
did in (2.5). In doing so we obtain:

I =

∫ ∞
0

∫ ∞
0

e−y(1+x
n)dx dy

Then we substitute u = yxn , du = nxn−1y dx . Therefore, our
double integral expressed as a product of two integrals is

I =

∫ ∞
0

∫ ∞
0

e−ye−yx
n
dx dy =

1

n

∫ ∞
0

e−yy−
1
ndy

∫ ∞
0

u
1
n
−1e−udu
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Notice that the first integral is simply Γ
(

1− 1
n

)
and the second

integral is Γ
(

1
n

)
. Here, Γ denotes the Gamma function as usual

(See (1.7)). Using Euler’s reflection formula, (2.3), we can write
this as ∫ ∞

0

1

1 + xn
dx =

π

n
csc

(
π

n

)
(2.8)

Checking with Mathematica,

In[16]:=

∫ ∞∞∞
0

1
1+xn

dx

Out[16]= ConditionalExpression[
π Csc[

π

n
]

n
,Re[n]>1]

Example 12: Evaluate the integral
∫ ∞
0

lnx2

x2 + a2
dx where a is a

constant.

Solution
We begin by substituting x = a2

u , dx = − a2

u2
du

I(a) = 2

∫ ∞
0

a2 (2 ln a− lnu)

u2
(
a4

u2
+ a2

) du

= 2

∫ ∞
0

2 ln a− lnu

a2 + u2
du

= 4 ln a

∫ ∞
0

du

a2 + u2
− 2

∫ ∞
0

lnu

a2 + u2
du︸ ︷︷ ︸

I(a)
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Therefore,

2I(a) = 4 ln a

∫ ∞
0

du

a2 + u2

The substitution u = a tan y , du = a sec2 y dy gives:

I(a) = 2 ln a

∫ π
2

0

a sec2 y

a2
(
tan2 y + 1

)dy =
2 ln a

a

∫ π
2

0
dy

=⇒ I(a) =
π ln a

a

Here, Mathematica returns the same result.

In[17]:=

∫ ∞∞∞
0

Log[x2]

x2+a2
dx

Example 13: Find
∫ √6
1

√
4x2+1
x2−1

x
dx

Solution
Let u =

√
4x2+1
x2−1 . Therefore,

u2 =
4x2 + 1

x2 − 1

=
4(x2 − 1) + 5

x2 − 1

=⇒ u2 − 4 =
5

x2 − 1

We now need to obtain an expression for dx in terms of u only.
With some algebraic manipulation we obtain:

1

u2 − 4
=
x2 − 1

5
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Figure 2.15: Graph of y =

√
4x2+1

x2−1

x

5

u2 − 4
+
u2 − 4

u2 − 4
= x2

x2 =
u2 + 1

u2 − 4
(2.9)

Differentiating both sides,

2x dx =
−10u

(u2 − 4)2
du (2.10)

Now we proceed to find dx
x . We start by writing

dx

x
=

2x

2x2
dx

Plugging in our results from (2.9) and (2.10),

dx

x
=
−10u

(u2 − 4)2
du · u2 − 4

2(u2 + 1)
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=
−5u

(u2 − 4)(u2 + 1)
du

Therefore,

I =

∫ ∞
√
5

5u2

(u2 − 4)(u2 + 1)
du

Using the method of partial fractions we obtain:

I =

∫ ∞
√
5

4

u2 − 4
+

1

u2 + 1
du

=

∫ ∞
√
5

(
1

u− 2
− 1

u+ 2

)
du+

[
arctanu

]∞
√
5

=

[
ln

(
u− 2

u+ 2

)]∞
√
5

+
π

2
− arctan

√
5

= − ln

(√
5− 2√
5 + 2

)
+
π

2
− arctan

√
5

Simplifying,
I = 2 ln

(
2 +
√

5
)

+
π

2
− arctan

√
5

Let’s see what Mathematica gives,

In[18]:=

∫ √6
1

√
4x2+1

x2-1
x

dx

Out[18]= 2 ArcSinh[2]+ArcTan[
1√
5
]

Which are equivalent since

sinh−1 x = ln
(√

x2 + 1 + x
)
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And

arctanx =
π

2
− arctanx−1

Example 14: Evaluate
∫ 1

0

arcsin
(

2x
1+x2

)
1 + x2

dx

Figure 2.16: Graph of y =
arcsin

(
2x

1+x2

)
1+x2

Solution

In general, a 1 + x2 term in the denominator is a tell-tale sign that
the substitution x = tanu will work, so we begin by letting x =
tanu , dx = sec2 u du. Our integral is then transformed to

I =

∫ π
4

0

arcsin
(

2 tanu
1+tan2 u

)
1 + tan2 u

· sec2 u du



2.4. OTHER PROBLEMS 95

I =

∫ π
4

0
arcsin

(
2 tanu

1 + tan2 u

)
du

We proceed to apply the trigonometric identity:

sinu =
2 tan u

2

1 + tan2 u
2

=⇒ sin 2u =
2 tanu

1 + tan2 u

Which gives

I =

∫ π
4

0
arcsin (sin 2u) du

On the interval [0, π4 ], arcsin (sin 2u) = 2u. Therefore,

I =

∫ π
4

0
2u du

I =
π2

16
(2.11)

Mathematica also gives this value as well

In[19]:=

∫ 1

0

ArcSin[
2 x

1+x2
]

1+x2
dx

Out[19]=
π2

16

We can end this chapter with an interesting formula
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Theorem

Let f(x) be an even Riemann-integrable function on [−α, α]
and g(x) an odd Riemann-integrable function on [−α, α],
where α ∈ R. We then have:∫ α

−α

f(x)

1 + bg(x)
dx =

∫ α

0
f(x)dx (2.12)

For any b ∈ R+.

Proof. Notice that we can write (2.12) as:∫ α

−α

f(x)

1 + bg(x)
dx =

∫ 0

−α

f(x)

1 + bg(x)︸ ︷︷ ︸
I1

dx+

∫ α

0

f(x)

1 + bg(x)
dx︸ ︷︷ ︸

I2

The substitution u = −x, du = −dx in I1 gives:

I1 =

∫ α

0

f(−u)

1 + bg(−u)
du

Using the fact that f(u) is even and g(u) is odd, we have

I1 =

∫ α

0

f(u)

1 + b−g(u)
du

Multiplying by
bg(u)

bg(u)
,

I1 =

∫ α

0

f(u)bg(u)

1 + bg(u)
du

Hence,
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∫ α

−α

f(x)

1 + bg(x)
dx = I1 + I2

=

∫ α

0

f(u)bg(u)

1 + bg(u)
du+

∫ α

0

f(x)

1 + bg(x)
dx

=

∫ α

0

(
1 + bg(u)

)
f(u)

1 + bg(u)
du

=

∫ α

0
f(u) du

=

∫ α

0
f(x) dx

Example 15: Evaluate
∫ π

−π

sin2 x

1 + ex3
dx

Solution

Notice that we can use (2.12) since f(x) = sin2 x is an even func-
tion on [−π, π] and g(x) = x3 is an odd function on [−π, π]. We
then have:

I =

∫ π

−π

sin2 x

1 + ex3
dx

=

∫ π

0
sin2 xdx

=
1

2

[
x− sinx cosx

]π
0

=
π

2
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Figure 2.17: Graph of y = sin2 x

1+ex3

Verifying with Mathematica,

In[20]:=

∫ πππ
-πππ

Sin[x]2

1+ex
3 dx

Out[20]=
π

2

And here we see the beauty of generalization!

In the first two chapters we saw how our elementary calculus tools
can solve a plethora of problems through creative application of
these tools. In nonstandard mathematical problems such as the
ones presented in this book, expanding one’s mathematical toolkit
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is of tremendous help. However, the mastery of one’s toolkit will
lead to far more ingenious and creative solutions! In the proceeding
chapters, we will explore and master additional tools to add to your
toolkit.

2.5 Exercise Problems

1) Evaluate
∫ ∞
0

dx

(1 + x)3 + 1
(Hint: u3 + 1 = (u2 − u+ 1)(u+ 1))

2) Evaluate
∫ 1

0

ln(1 + x)

1 + x2
dx

3) Find
∫ π

2

0

√
tanx

sinx(sinx+ cosx)
dx

4) Find
∫ √3
1

dx(
1 + x2

)3/2

5) Evaluate
∫ π

0

√
1− sinx dx

6) Evaluate
∫ π/2

0

dx

1 + tan2019 x
(Hint: 2019 is a distractor)

7) Find
∫ ∞
0

lnx

x2 + 2x+ 4
dx (Hint: Let u = 4

x)
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8) Find
∫ 2π

0

3− cosx

3 + cosx
dx (Hint: Use the substitution u = tan x

2 . See

(2.11))

9) Show that 22
7 > π using the integral

∫ 1

0

x4(1− x)4

1 + x2
dx (Source:

1968 Putnam competition)

10) Define I(a) =

∫ π
4

0
ex tana x dx. Find lim

a→∞
aI(a)



Chapter 3

Feynman’s Trick

101
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3.1 Introduction

A straightforward but extremely effective technique, differentiation
under the integral sign is simply a clever use of Leibniz’s integral
rule. In mathematical pop culture, it is often labeled as "Feyn-
man’s trick" after the late American physicist Richard Feynman
(1918-1988). Feynman said this in discussing his "trick":

One thing I never did learn was contour integration. I had
learned to do integrals by various methods shown in a book
that my high school physics teacher Mr. Bader had given
me. The book also showed how to differentiate parameters

under the integral sign - It’s a certain operation. It turns out
that’s not taught very much in the universities; they don’t

emphasize it. But I caught on how to use that method, and I
used that one damn tool again and again. So because I was
self-taught using that book, I had peculiar methods of doing

integrals. The result was that, when guys at MIT or
Princeton had trouble doing a certain integral, it was

because they couldn’t do it with the standard methods they
had learned in school. If it was contour integration, they

would have found it; if it was a simple series expansion, they
would have found it. Then I come along and try

differentiating under the integral sign, and often it worked.
So I got a great reputation for doing integrals, only because
my box of tools was different from everybody else’s, and they
had tried all their tools on it before giving the problem to

me.

The last sentence perhaps best summarizes not only the purpose of
this chapter but the entire book as well. Often in engineering and
the mathematical sciences, peculiar and nonstandard integrals arise.
And unfortunately, few resources are available for solving such inte-
grals! The goal of this book is to provide the reader with a plethora
of techniques and methods to go about such problems. So, with
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that in mind, let us get started!

Theorem

Let f(x, α) be a differentiable function in α with ∂
∂αf contin-

uous. Then the following equality holds:

d

dα

∫ b

a
f(x, α) dx =

∫ b

a

∂

∂α
f(x, α) dx

See footnote for a rigorous justification of the above theorem1.

3.2 Direct Approach

In this method, an integral f(α) is defined with the parameter α
such that when the integral is differentiated, a standard integral
is found. After deriving a closed form for f ′(α), one integrates the
closed form and obtains an expression for f(α), of course with a
+C at the end.

After an expression is derived for f(α), an initial is needed to de-
termine the added constant ”C”. In most integrals, α = 0 or α =
∞ is easy or even trivial to compute and therefore chosen as an ini-
tial condition.

Now, what does this look like? Let us take a look at a well-known
example.

Example 1: Find the value of
∫ ∞
0

sin2 x

x2
dx

1Hijab, O. Introduction to Calculus and Classical Analysis. New York:
Springer-Verlag, p. 189, 1997.
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Figure 3.1: Graph of y = sin2 x
x2

Solution

We first use IBP with u = sin2 x and dv =
dx

x2
.

I =

∫ ∞
0

sin2 x

x2
dx =

[
−sin2 x

x

]∞
0

+

∫ ∞
0

2 sinx cosx

x
dx

= 0 +

∫ ∞
0

sin 2x

x
dx

Substituting 2x→ x,

I =

∫ ∞
0

sinx

x
dx

This is the famous Dirichlet integral, named after the German
mathematician Peter Dirichlet. Now, consider an integral of the
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form

f(α) =

∫ ∞
0

e−αx sinx

x
dx

Where α ≥ 0. Our original integral is I = f(0). Differentiating
under the integral sign,

f ′(α) = −
∫ ∞
0

e−αx sinx dx

= − 1

1 + α2

Where we used IBP to get our last result. We can now integrate to
get an expression for f(α),

f(α) = −
∫

1

1 + α2
dα = − arctanα+ C

We know that
lim
α→∞

f(α) = 0 =⇒ C =
π

2

Hence
f(α) =

π

2
− arctanα

Plugging in our desired value,

f(0) =
π

2

This example serves as a perfect example of thinking outside the
box!

Example 2: Evaluate
∫ ∞
0

x ln
(
x3+1
x3

)
1 + x3

dx



106 CHAPTER 3. FEYNMAN’S TRICK

Figure 3.2: Graph of y =
x ln

(
x3+1

x3

)
1+x3

Solution

Let

f(α) =

∫ ∞
0

x ln
(
x3+α
x3

)
1 + x3

dx

=

∫ ∞
0

x
(

ln
(
x3 + α

)
− lnx3

)
1 + x3

dx

Differentiating under the integral sign,

f ′(α) =

∫ ∞
0

x(
x3 + α

)
(1 + x3)

dx

The substitution u = x3,dx =
du

3u
2
3

gives
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f ′(α) =
1

3

∫ ∞
0

du

u
1
3 (α+ u)(1 + u)

Using the method of partial fractions,

f ′(α) =
1

3α− 3

[∫ ∞
0

du

u
1
3 (1 + u)

−
∫ ∞
0

du

u
1
3 (α+ u)

]
(3.1)

We can use the fact that

∫ ∞
0

du

u
1
3 (u+ α)

=
2π

α
1
3

√
3

The proof is left as an exercise to the reader (Hint: Make the sub-
stitution y = u

1
3 and then use the method of partial fractions).

Plugging in that result into (3.1) gives:

f ′(α) =
1

3α− 3

[
2π√

3
− 2π

α
1
3

√
3

]
Simplifying algebraically,

f ′(α) =
2π

3
√

3

(
1

α
1
3 + α

2
3 + α

)
(3.2)

Since f(0) = 0, we can take the definite integral of (3.2) from 0 to 1
to get our desired integral, f(1).

f(1) =

∫ 1

0
f ′(α) dα

=
2π

3
√

3

∫ 1

0

dα

α
1
3 + α

2
3 + α
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=
2π

3
√

3

∫ 1

0

dα

α
1
3

(
α

2
3 + α

1
3 + 1

)
The substitution u = α

1
3 , dα = 3u2 du yields:

f(1) =
2π√

3

∫ 1

0

u

u2 + u+ 1
du

=
2π√

3

[∫ 1

0

2u+ 1

2(u2 + u+ 1)
du−

∫ 1

0

du

2(u2 + u+ 1)

]

Both integrals can be easily evaluated (The first by the substitution
y = u2 + u+ 1, dy = (2u+ 1) du and the second by completing the
square). Therefore,

f(1) =
2π√

3

[
ln 3

2
− π
√

3

18

]

=
π
√

3 ln 3

3
− π2

9

Example 3: Evaluate
∫ π

2

−π
2

ln (1 + α sinx)

sinx
dx for |α| < 1.

Solution
Define

f(α) =

∫ π
2

−π
2

ln (1 + α sinx)

sinx
dx

We then have
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Figure 3.3: Case when α = .5

f ′(α) =

∫ π
2

−π
2

1

1 + α sinx
dx

A standard substitution here is the half angle tangent substitu-
tion, u = tan

(
x
2

)
, dx = 2

u2+1
du. This lets us express sinx as

sin(x) =
2u

1 + u2

Thus,

f ′(α) =

∫ 1

−1

2

u2 + 2αu+ 1
du

= 2

∫ 1

−1

du

(
√

1− α2)2 + (u+ α)2
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This integral is in the form:

∫ b

a

dx

x2 + d2
=

[
1

d
arctan

(
x

d

)]b
a

Therefore,

f ′(α) = 2

∫ 1

−1

du

(
√

1− α2)2 + (u+ α)2

=

[
2√

1− α2
arctan

(
u+ α√
1− α2

)]1
−1

After a tedious round of algebra and simplification, we obtain:

f ′(α) =
π√

1− α2

Thus,

f(α) =

∫
f ′(α) dα

=

∫
π√

1− α2
dα

= π arcsinα+ C

Notice that

f(0) =

∫ π
2

−π
2

ln 1

sinx
dx = 0

=⇒ C = 0

Therefore,
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f(α) =

∫ π
2

−π
2

ln (1 + α sinx)

sinx
dx = π arcsinα

Example 4: Find
∫ ∞
1

ln(lnx)

xα
dx for α > 1.

Figure 3.4: Graph of y = ln(lnx)
xα for α = 2

Solution

Let
f(α) =

∫ ∞
1

ln(lnx)

xα+1
dx
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Substituting y = lnx, dy = dx
x ,

f(α) =

∫ ∞
0

ln y

eαy
dy

We used α+1 instead of α to make the aforementioned substitution
much cleaner. This is one of many examples where the parame-
ter choice is not immediately obvious, and some vision is required.
Now, we can differentiate under the integral sign to get

f ′(α) = −
∫ ∞
0

ye−αy ln y dy

By applying IBP with u = −y ln y, dv = e−αydy we get:

f ′(α) =

[
y ln ye−αy

α

]∞
0

− 1

α

∫ ∞
0

e−αy ln y + e−αydy

We first need to evaluate the first expression:

B =

[
y ln ye−αy

α

]∞
0

= lim
y→∞

[
y ln y

eαyα

]
− lim
y→0

[
ln y
eαyα
y

]

This is an ∞∞ case in both limits, so we can apply L’Hopital’s rule:

B = lim
y→∞

ln y + 1

α2eαy
− lim
y→0

1
y

α2yeαy−αeαy
y2

= lim
y→∞

ln y + 1

α2eαy
− lim
y→0

y

α2yeαy − αeαy

The latter limit can be easily evaluated to equal 0, but the first
limit needs one more round of L’Hopital’s rule as it is still a ∞∞ sit-
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uation:

B = lim
y→∞

1
y

α3eαy

= lim
y→∞

1

α3yeαy

= 0

Therefore,

f ′(α) = 0− 1

α

∫ ∞
0

e−αy ln y + e−αydy

= − 1

α

(∫ ∞
0

e−αy ln y dy +

∫ ∞
0

e−αy dy

)

The first integral is simply f(α) and the latter integral is a stan-
dard integral. We then get the differential equation

f ′(α) = −f(α)

α
− 1

α2

We can rearrange the above differential equation and multiply both
sides by α to obtain:

αf ′(α) + f(α) = − 1

α

d

dα
αf(α) = − 1

α

Integrating both sides,

αf(α) = − lnα+ C

f(α) = − lnα+ C

α
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Since
f(α) =

∫ ∞
0

e−αy ln y dy

A standard value would be f(1) = −γ. Thus,

f(α) = − lnα+ γ

α

∴
∫ ∞
1

ln(lnx)

xα
dx = f(α− 1) = − ln(α− 1) + γ

α− 1

Example 5: Evaluate
∫ ∞
0

e−x
2

cos(5x) dx

Figure 3.5: Graph of y = e−x
2

cos(5x)

Solution
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Define a function:

f(α) =

∫ ∞
0

e−x
2

cos(αx) dx

Differentiating under the integral sign,

f ′(α) = −
∫ ∞
0

xe−x
2

sin(αx) dx

We can now use IBP with u = sin(αx), dv = xe−x
2

dx to obtain:

f ′(α) =
1

2

[
e−x

2
sin(αx)

]∞
0︸ ︷︷ ︸

=0−0=0

−α
2

∫ ∞
0

e−x
2

cos(αx) dx︸ ︷︷ ︸
f(α)

Notice that we can set up a simple differential equation:

f ′(α) = −α
2
f(α)

We can now transition to using Leibniz notation to make solving
this a little easier to digest.

df

dα
= −α

2
f

Multiplying both sides by
dα

f
,

df

f
= −α

2
dα

∫
df

f
= −

∫
α

2
dα
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∴ ln f = −α
2

4
+ C

Exponentiating both sides,

f(α) = eCe−
α2

4

The case when α = 0 is half of the famous Gaussian integral:

1

2

∫ ∞
−∞

e−x
2

dx =

∫ ∞
0

e−x
2

dx =

√
π

2

See (9.9) for proof. This integral is core to many disciplines due to
its applications in statistics.

=⇒ f(α) =

√
π

2
e−

α2

4

To get our desired integral, we evaluate f(5) to get:

f(5) =

√
π

2
e−

52

4

∴
∫ ∞
0

e−x
2

cos(5x) dx =

√
π

2
e−

25
4

Example 6: Find
∫ π

4

0

arctan
(
4 sin(2x)

)
sin(2x)

dx

Solution

The substitution u = 2x, du = 2 dx gives
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Figure 3.6: Graph of the y =
arctan(4 sin(2x))

sin(2x)

I =
1

2

∫ π
2

0

arctan(4 sinu)

sinu
du

Now, define a function:

f(α) =

∫ π
2

0

arctan(α sinu)

sinu
du

Differentiating under the integral sign,

f ′(α) =

∫ π
2

0

1

1 + α2 sin2 u
du

We can multiply by
sec2 u

sec2 u
to get:
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f ′(α) =

∫ π
2

0

sec2 u

sec2 u+ α2 tan2 u
du

Using the fact that sec2 u = 1 + tan2 u we can write:

f ′(α) =

∫ π
2

0

sec2 u

tan2 u+ 1 + α2 tan2 u
du

=

∫ π
2

0

sec2 u(
α2 + 1

)
tan2 u+ 1

du

=
1

α2 + 1

∫ π
2

0

sec2 u

tan2 u+ 1
α2+1

du

The substitution y = tanu, dy = sec2 u du then gives:

f ′(α) =
1

α2 + 1

∫ ∞
0

dy

y2 + 1
α2+1

Which is a standard integral that evaluates to

f ′(α) =
π

2
√
α2 + 1

Integrating both sides,

∫
f ′(α) dα =

∫
π

2
√
α2 + 1

dα

=
π

2
sinh−1 α+ C

=
π

2
ln
(
α+

√
α2 + 1

)
+ C
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Using f(0) = 0 lets us determine the value of C. Hence,

f(α) =
π

2
ln
(
α+

√
α2 + 1

)

∴ I =
1

2
f(4) =

π

4
ln
(

4 +
√

17
)

Example 7: Evaluate
∫ ∞
0

∫ ∞
0

sinx sin y sin(x+ y)

xy(x+ y)
dx dy

Figure 3.7: Three-dimensional plot of integrand

Solution
Recall that
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Figure 3.8: Contour plot of integrand

sin(x+ y) = sinx cos y + cosx sin y

Thus,

I =

∫ ∞
0

∫ ∞
0

(sinx cos y + cosx sin y) sinx sin y

xy(x+ y)
dx dy

By symmetry,

I = 2

∫ ∞
0

∫ ∞
0

sin2 x cos y sin y

xy(x+ y)
dx dy
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Using the fact that 2 sin θ cos θ = sin 2θ, we have:

I =

∫ ∞
0

∫ ∞
0

sin2 x sin 2y

xy(x+ y)
dx dy

We can turn the above double integral into a triple integral:

I =

∫ ∞
0

∫ ∞
0

∫ ∞
0

sin2 x sin 2y

xy
e−z(x+y)dz dx dy

Since ∫ ∞
0

e−ax dx =
1

a

We will now introduce an elementary theorem.

Theorem

Let f(x) and g(y) be integrable functions. Then the follow-
ing equality holds:

∫ b

a

∫ d

c
f(x)g(y)dy dx =

(∫ b

a
f(x) dx

)(∫ d

c
g(y) dy

)

Proof. Note that for any constant k (i.e. independent of x),

∫ b

a
kf(x) dx = k

∫ b

a
f(x) dx

Also, ∫ b

a

∫ d

c
f(x)g(y)dy dx =

∫ b

a

(∫ d

c
f(x)g(y)dy

)
dx
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∫ b

a
f(x)

(∫ d

c
g(y)dy

)
dx

Now, since
∫ d
c g(y)dy is a constant, we can write

=

(∫ d

c
g(y)dy

)
·

(∫ b

a
f(x)dx

)

Using this theorem, we can split the integral above so that we have
a product of integrals:

I =

∫ ∞
0

(∫ ∞
0

sin2 x

x
e−zxdx

)(∫ ∞
0

sin 2y

y
e−yzdy

)
dz

Now, define two functions:

f1(z) =

∫ ∞
0

sin2 x

x
e−zxdx

f2(z) =

∫ ∞
0

sin 2y

y
e−yzdy

Both these integrals can be easily solved using Feynman’s trick
(Differentiation under the integral sign). Starting with f1 we get:

f ′1(z) = −
∫ ∞
0

sin2 x e−zxdx

= −1

2

∫ ∞
0

(1− cos 2x) e−zxdx

= −1

2

(∫ ∞
0

e−zxdx−
∫ ∞
0

cos(2x) e−zx dx

)
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The second integral can be easily evaluated using IBP. We therefore
have:

f ′1(z) =
z

2z2 + 8
− 1

2z

Thus,

f1(z) =

∫
f ′1(z) dz =

1

2

∫ (
z

z2 + 4
− 1

z

)
dz

=
1

2

(
1

2
ln
(
z2 + 4

)
− ln z

)
+ C

It is easy to see that f1(∞) = 0 =⇒ C = 0. We then have

f1(z) =
1

4
ln

(
1 +

4

z2

)

Likewise, we can differentiate f2 to obtain:

f ′2(z) = −
∫ ∞
0

sin(2y)e−yzdy

Evaluating the above integral using IBP,

f ′2(z) = − 2

z2 + 4

=⇒ f2(z) = −
∫

2

z2 + 4
dz = − arctan

(
z

2

)
+ C

Using the fact that f2(∞) = 0, we can determine the value of C:

C = lim
z→∞

arctan

(
z

2

)
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C =
π

2

∴ f2(z) =
π

2
− arctan

(
z

2

)
Since

arctan

(
1

x

)
+ arctan (x) =

π

2

We have that

f2(z) = arctan

(
2

z

)

Now, back to our original integral:

I =

∫ ∞
0

(∫ ∞
0

sin2 x

x
e−zx dx

)(∫ ∞
0

sin 2y

y
e−yz dy

)
dz

=
1

4

∫ ∞
0

ln

(
1 +

4

z2

)
arctan

(
2

z

)
dz

We proceed to substitute tan t = 2
z =⇒ dz = −2 csc2 t dt

I =

∫ π
2

0
t csc2(t) ln(sec t) dt

Using IBP with u = t ln(sec t) , dv = csc2(t)dt gives

I = −
[
t ln(sec t) cot t

]π
2

0
+

∫ π
2

0
cot t

[
t tan t+ ln(sec t)

]
dt

=

∫ π
2

0
t dt+

∫ π
2

0
ln(sec t) cot t dt

=
π2

8
+

∫ π
2

0

ln(sec t)

sec2 t− 1
tan t dt
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Substituting eu = sec t, dt =
du

tan t
we have:

I =
π2

8
+

∫ ∞
0

u

e2u − 1
du

By the substitution 2u→ u, the integral is transformed to:

I =
π2

8
+

1

4

∫ ∞
0

u

eu − 1
du

By definition (16.2) of the zeta function, we know that:

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx

Therefore,

I =
π2

8
+

1

4
ζ(2)

Plugging in ζ(2) = π2

6 ,

I =
π2

8
+
π2

24

=
π2

6

Example 8: Evaluate
∫ ∞
0

arctan(3x) arctan(2x)

x2
dx

Solution

Define a function:
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Figure 3.9: Graph of y = arctan(3x) arctan(2x)
x2

f(α, β) =

∫ ∞
0

arctan(αx) arctan(βx)

x2
dx

Since f is a multi-variable function, we will use partial differenti-
ation. For the reader who has not taken a course in multivariable
calculus, a partial derivative, ∂

∂x , can be computed by treating all
terms not containing x as constants. After differentiating we get

∂

∂α
f(α, β) =

∫ ∞
0

arctan(βx)

x(1 + α2x2)
dx

And,

∂2

∂α∂β
f(α, β) =

∫ ∞
0

1

(1 + α2x2)(1 + β2x2)
dx

=
π

2(α+ β)
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The integral above is a standard one, and can be easily calculated
using the method of partial fractions. We can now integrate with
respect to β to get:

∂

∂α
f(α, β) =

∫
∂2

∂α∂β
f(α, β)dβ

=

∫
π

2(α+ β)
dβ

=
π

2
ln(α+ β) + C(α)

The case ∂
∂αf(α, β)|β=0= 0 is trivial to calculate. We can then cal-

culate the value of C(α):

C = −π
2

lnα

=⇒ ∂

∂α
f(α, β) =

π

2

[
ln(α+ β)− lnα

]
By symmetry, it is easy to see

∂

∂β
f(α, β) =

π

2

[
ln(α+ β)− lnβ

]
We can now integrate with respect to α to obtain an expression for
f(α, β).

f(α, β) =

∫
∂

∂α
f(α, β) dα

=
π

2

∫
ln(α+ β)− lnα dα

=
π

2

[
α ln(α+ β) + β ln(α+ β)− α lnα

]
+ C(β)
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Where C(·) denotes the integration constant analogue for multi-
variable functions. Similarly,

f(α, β) =

∫
∂

∂β
f(α, β)dβ

=
π

2

∫
ln(α+ β)− lnβ dβ

=
π

2

[
α ln(α+ β) + β ln(α+ β)− β lnβ

]
+ C(α)

Therefore,

f(α, β) =
π

2

[
α ln(α+ β) + β ln(α+ β)− β lnβ − α lnα

]
Converting into a single logarithm,

f(α, β) =
π

2
ln

(
(α+ β)α+β

ααββ

)

Plugging in our values, we have∫ ∞
0

arctan(3x) arctan(2x)

x2
dx =

π

2
ln

(
55

33 · 22

)

3.3 Indirect Approach

Quite a few integrals are actually derivatives of integrals that are
easier to compute. One advantage of differentiation under the inte-
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gral sign is that it can go both ways, i.e. one can integrate a deriva-
tive of an expression to obtain a result, or one can take the deriva-
tive of a known integral to obtain a result. We can start off with an
easy example:

Example 9:
∫ ∞
0

xα lnx

(1 + xα)2
dx

Figure 3.10: Graph of y = xα lnx
(1+xα)2

for α = 2

Solution
Define

f(α) =

∫ ∞
0

dx

1 + xα

Differentiating under the integral sign gives
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f ′(α) = −
∫ ∞
0

xα lnx

(1 + xα)2
dx

Notice that our desired integral is −f ′(α). We can now use the re-
sult from (2.8),

f(α) =
π

α
csc

(
π

α

)
(3.3)

Therefore,

I = −f ′(α) =
π csc

(
π
α

)
α2

−
π2 csc

(
π
α

)
cot
(
π
α

)
α3

Example 10: Evaluate
∫ π

2

0
sinx cosx

√
tanx ln(tanx) dx

Solution

A straightforward substitution would be u =
√

tanx, du = sec2 x
2
√
tanx

dx,
but our integral needs some rearranging first. Notice that we can
rearrange our desired integral as:

I =

∫ π
2

0

4 sec2 x tan2 x ln
(√

tanx
)

2 sec4 x
√

tanx
dx

Therefore the substitution u =
√

tanx yields:

I = 4

∫ ∞
0

u4 lnu

(u4 + 1)2
du
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Figure 3.11: Graph of y = sinx cosx
√

tanx ln(tanx)

This integral has been already evaluated (See (3.3)). Thus,

I = 4

(
π

42
csc

(
π

4

))(
1− π

4
cot

(
π

4

))

=
π
√

2(4− π)

16

3.4 Exercise Problems

1) Find the value of
∫ 1

0

x2 − 1

lnx
dx
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2) Evaluate
∫ 1

0

ln(1 + x)

1 + x2
dx

3) Find
∫ π/2

0
ln
(
α cos2 x+ β sin2 x

)
dx for α, β > 0

4) Use differentiation under the integral sign to evaluate∫ π

−π

cos2 x

1 + ax
dx

For a > 0.

5) Evaluate
∫ 2π

0
ecosx cos(sinx) dx

6) Prove that
∫ ∞
−∞

e−x
2
dx =

√
π (Hint: Let f(α) =

∫ ∞
0

e−α
2(1+x2)

1 + x2
dx)

7) Find
∫ π/2

0

x

tanx
dx

8) Find
∫ ∞
0

cosx

1 + x2
dx (Hint: Use the indirect method)

9) Evaluate
∫ π/2

0

dx(
α cos2 x+ β sin2 x

)2 for α, β > 0.

10) Prove Frullani’s theorem
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Theorem

Let a, b > 0 and let f be continuously differentiable on
[0,∞). Suppose that

lim
x→∞

f(x)

Exists and is finite. Then the following equality holds:∫ ∞
0

f(ax)− f(bx)

x
dx =

(
f(∞)− f(0)

)
· ln
(
a

b

)
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4.1 Introduction

In this chapter, we will explore the evaluation of simple series. We
will start with finite series and later invoke the concept of a limit to
extend our formulas to infinite series. This will be seen in action as
we focus on telescoping series later in the chapter! To introduce our
chapter, we can begin with the definition of summation.

Definition

Summation is the addition of a sequence of numbers, called
addends or summands. The result is their sum or total. A
series is similar to a sum, but is often used to refer to sum-
mations of infinite sequences.

4.2 Arithmetic and Geometric Series

We will start by a famous example provided by the story of the
German mathematician Carl Freidrich Gauss in his mathematics
class1. One day, Gauss’ teacher asked his class to add together all
the numbers from 1 to 100, a task the teacher thought would oc-
cupy the students for quite some time. He was shocked when young
Gauss quickly wrote down the correct answer!

The teacher could not understand how his student had calculated
the sum so quickly, but the eight-year old Gauss pointed out that
the problem was way simpler than the teacher imagined!

Example 1: Evaluate S =

100∑
n=1

n

Solution

1Waltershausen, W. S. von, Gauß, C. F. (1994). Gauss zum Gedächtnis.
Vaduz: Sändig Reprint Verlag.
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Many reading this book are familiar with the formula to solve such
a problem and perhaps the background of the aforementioned story
as well. We begin by expanding S,

S = 1 + 2 + 3 + 4 · · ·+ 96 + 97 + 98 + 99 + 100

Gauss started by recognizing that one can pair the 1st and the
100th term, the 2nd and the 99th term, and so on to make a sum
of 101.

S = (1 + 100) + (99 + 2) + (98 + 3) + (97 + 4) + · · ·

Now, there are 100
2 such sums equivalent to 101 in S. Therefore,

our answer is:

S = 101

(
100

2

)
= 5050

The reader might recognize this as the formula

k∑
n=1

n =
k(k + 1)

2

Example 2: Evaluate
10∑
n=0

2n

Solution

We begin by expanding our sum,

S =

10∑
n=0

2n = 1 + 2 + 4 + · · ·+ 210
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Consider multiplying S by 2, or the common ratio.

2S = 2 + 4 + 8 + · · · 211

Subtracting 2S from S,

−S = 1− 211

S = 211 − 1

Example 3: Evaluate
k∑

n=0

rn for r 6= 1 and finite k.

Solution

We can apply the same logic from our last example. Consider

S =

k∑
n=0

rn = 1 + r + r2 + · · ·+ rk (4.1)

Multiplying (4.1) by r gives

rS = r + r2 + · · ·+ rk+1 (4.2)

As we have done previously, we can subtract (4.2) from (4.1) to get

S − rS = 1− rk+1

(1− r)S = 1− rk+1
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Therefore,
k∑

n=0

rn =
1− rk+1

1− r
(4.3)

Example 4: Evaluate
∞∑
n=0

rn for |r| < 1.

Solution

By definition,

∞∑
n=0

rn = lim
k→∞

k∑
n=0

rn

Plugging in our result from (4.3),

∞∑
n=0

rn = lim
k→∞

1− rk+1

1− r

Since |r| < 1, as k →∞, rk+1 = 0. Thus,

∞∑
n=0

rn =
1

1− r

It is now a good time to introduce some standard results. The sum
of the first N squares is:

N∑
n=1

n2 =
N(N + 1)(2N + 1)

6
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Figure 4.1: A geometric visualization of
∑∞

n=1
1
2n = 1. We begin

with a rectangle with area 1
2 and divide it in half with each itera-

tion. The resulting figure is a square of area 1!

Also,
N∑
n=1

n3 =

 N∑
n=1

n

2

=
N2(N + 1)2

4

Both formulas can be easily proved by mathematical induction.
The proofs for these formulas are left as an exercise for the reader.
We also have a general formula for such sums known as Faulhaber’s
formula2.

2Donald E. Knuth (1993). Johann Faulhaber and sums of powers. Math-
ematics of Computation. 61 (203): 277–294. arXiv:math.CA/9207222.
doi:10.2307/2152953. JSTOR 2152953.
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Theorem

In general,

N∑
n=1

nα =
1

α+ 1

α∑
n=0

(
α+ 1

n

)
BnN

α+1−n

Where Bn denotes the nth Bernoulli number.

Definition

The Bernoulli numbers, usually denoted as Bn, are a se-
quence of real numbers that satisfy the generating function

x

ex − 1
=
∞∑
n=0

Bnx
n

n!
(4.4)

These numbers have a deep relationship with many of the
special functions discussed later in the book. Remarkably,
these numbers can also be used to evaluate even zeta func-
tion values:

ζ(2n) = (−1)n−1
2π2nB2n

2(2n)!

4.3 Arithmetic-Geometric Series

We now have formulas for both geometric and arithmetic series, but
what about series that are both? For example, the series

N∑
n=1

n · 4n

This type of series is known is an arithmetic-geometric series. For-
tunately, there is a general formula for this series!
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Theorem

Let {an} = [a + (n − 1)b]rn−1 be defined as an arithmetic-
geometric progression. Also, denote

SN =
N∑
n=1

an = a+[a+b]r+[a+2b]r2+ · · ·+[a+(N−1)b]rN−1

(4.5)
As the N th partial sum. We can then express SN as:

SN =
br(1− rN−1)

(1− r)2
+
a− [a+ (N − 1)b]rN

1− r
(4.6)

Proof. Multiplying SN by r gives:

rSN = r
N∑
n=1

an = ar+[a+b]r2+[a+2b]r3+· · ·+[a+(N−1)b]rN (4.7)

Subtracting (4.7) from (4.5) gives:

−

SN = a+ [a+ b]r+ [a+ 2b]r2+ · · ·+ [a+ (N − 1)b]rN−1

SNr = 0+ ar+ [a+ b]r2+ · · ·+ [a+ (N − 1)b]rN

(1− r)SN =a +br +br2 + · · · +brN−1 −[a+ (N − 1)b]rN

Notice that br + br2 + · · · + brN−1 is a geometric series. We can
therefore write:

(1− r)SN = a+
br(1− rN−1)

1− r
− [a+ (N − 1)b]rN

∴ SN =
br(1− rN−1)

(1− r)2
+
a− [a+ (N − 1)b]rN

1− r
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What about infinite arithmetic-geometric series? Before we try to
derive the general case, we can get some intuition with an example.

Example 5: Evaluate
∞∑
n=1

n

3n

Figure 4.2: Plot of the partial sums

Solution

Consider

S =
1

3
+

2

9
+

3

27
+ · · · (4.8)

Multiplying S by 1
3 gives
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S

3
=

1

9
+

2

27
+

3

81
+ · · · (4.9)

Subtracting (4.9) from (4.8),

−

S =
1

3
+

2

9
+

3

27
+

4

81
+ · · ·

S

3
= 0+

1

9
+

2

27
+

3

81
+ · · ·

2

3
S =

1

3
+

1

9
+

1

27
+ +

1

81
+ · · ·

Notice that 2
3S is a geometric series with common ratio 1

3 . Hence,

2

3
S =

∞∑
n=1

1

3n
=

1
3

1− 1
3

=
1

2

∴ S =
3

4

Notice that we can also use (4.6) to obtain a general form. We have
the following theorem:

Theorem

∞∑
n=1

[a+ (n− 1)b]rn−1 =
br

(1− r)2
+

a

1− r
(4.10)

For |r|< 1. If |r| ≥ 1, then:

∞∑
n=1

[a+ (n− 1)b]rn−1

Diverges.
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Proof. Notice that for |r| ≥ 1, the sequence {an} = [a+(n−1)b]rn−1

does not converge to 0,

lim
n→∞

[a+ (n− 1)b]rn−1 =∞

Therefore, the sum of the terms of this sequence does not converge.
However, for |r|< 1, the series converges by the ratio test, which
will be discussed in the next chapter.

To begin, consider the equation for the partial sums of an arithmetic-
geometric series,

SN =
N∑
n=1

[a+ (n− 1)b]rn−1 =
br(1− rN−1)

(1− r)2
+
a− [a+ (N − 1)b]rN

1− r

By taking the limit as N →∞, we can obtain an expression for S:

S = lim
N→∞

SN = lim
N→∞

br(1− rN−1)
(1− r)2

+
a− [a+ (N − 1)b]rN

1− r

rN → 0 as N →∞ because we are only considering |r|< 1. Also,

lim
N→∞

[a+ (N − 1)b]rN = 0

Which can be easily shown by L’Hopital’s rule. Therefore,

S =
br

(1− r)2
+

a

1− r

Now, what about any series that is the product of multiple se-
quences? Is there a general formula? Unfortunately, there is no
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"general" formula for any series. If that were to exist, many math-
ematicians would lose their job! However, we can get something
almost as good: summation by parts.

4.4 Summation by Parts

By this point of this book, the reader should be familiar with inte-
gration by parts, which is proved in Chapter two.

There is a lesser-known discrete analogue to integration by parts
called summation by parts, which is for sequences instead of func-
tions.

Theorem

Let {an}∞n=1 and {bn}∞n=1 be two sequences. Also, denote

SN =

N∑
n=1

an

As the N th partial sum of the series
∑∞

n=1 an. We then have:

N∑
n=k

anbn = SNbN − Sk−1bk −
N−1∑
n=k

Sn (bn+1 − bn) (4.11)

This formula is useful not only in the evaluation of series,
but also in proving the convergence or divergence of series.

Proof. Define

SNk =

N∑
n=k

anbn

First, notice that:
Sn − Sn−1 = an
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Hence,

SNk =
N∑
n=k

anbn =
N∑
n=k

(Sn − Sn−1) bn

=

N∑
n=k

Snbn −
N∑
n=k

Sn−1bn

Expanding the expression above

SNk = Skbk + Sk+1bk+1 + Sk+2bk+2 + · · ·+ SNbN
− (Sk−1bk + Skbk+1 + Sk+1bk+2 + · · ·+ SN−1bN )

We can pull the underlined terms to the outside to obtain

SNk = [SNbN − Sk−1bk]
+ Skbk + Sk+1bk+1 + Sk+2bk+2 + · · · SN−1bN−1

− (Skbk+1 + Sk+1bk+2 + · · ·+ SN−1bN ) (4.12)

Notice that combining the expressions from the second and third
line in (4.12) gives

S = [SNbN − Sk−1bk] + Sk(bk − bk+1) + Sk+1(bk+1 − bk+2) + · · ·
+ SN−1(bN−1 − bN )

= [SNbN − Sk−1bk] +
N−1∑
n=k

Sn (bn − bn+1)
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= [SNbN − Sk−1bk]−
N−1∑
n=k

Sn (bn+1 − bn)

Hence proved.

Example 6: Evaluate
N∑
n=1

n · 2n

Figure 4.3: Plot of the partial sums when N = 10

Solution

We will apply (4.11) here,

N∑
n=k

anbn = SNbN − Sk−1bk −
N−1∑
n=k

Sn (bn+1 − bn)

Where

SN =
N∑
n=1

an



4.4. SUMMATION BY PARTS 149

Let an = 2n and bn = n. We therefore have:

SN =
N∑
n=1

2n = 2(2N − 1)

And S0 = 0. Thus,

SN =
N∑
n=1

n · 2n = N · 2(2N − 1)−��
�*0

S0b1 −
N−1∑
n=1

2(2n− 1) · (n+ 1−n)

= 2N(2N − 1)−
N−1∑
n=1

2(2n − 1)

= 2N(2N − 1)− 2

N−1∑
n=1

(2n)−
N−1∑
n=1

1


= 2N(2N − 1)− 2

[
(2N − 2)−N + 1

]
= N · 2N+1 − 2N − 2N+1 + 4 + 2N − 2

= 2N+1(N − 1) + 2

Notice that we could have also applied the arithmetic-geometric
progression formula in (4.6)!

Example 7: Given a fair standard 6-sided die, what is the ex-
pected number of rolls before getting a 6?

Solution

In this problem, we will consider the notion of an "expected value".
Although many readers will be familiar with this concept already, it
is conveniently defined below:
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Definition

Let X be a random variable, or a variable whose value de-
pends on the outcome of a random phenomenon, with a fi-
nite number of possible values x1, x2, · · · , xN with probabil-
ities p1, p2, · · · , pN , respectively. The expected value of X is
defined as:

E[X] =
N∑
n=1

xnpn

For a random variable X with a countably infinite number
of values x1, x2, · · · with probabilities p1, p2, · · ·, respectively,
such that the series

∑∞
n=1|xn| pn is convergent, the expected

value of X is:

E[X] =

∞∑
n=1

xnpn (4.13)

The stipulation for the absolute convergence of the series∑∞
n=1 xnpn is extremely important because of the Riemann

rearrangement theorem (See (5.2)). There is much more to
the notion of expected value, but this basic introduction will
suffice for our purposes.

Let X be the number of dice rolls till the number 6 is obtained.
Notice that the probability that the number 6 is obtained on any
given roll of dice is 1

6 and the probability of getting any number
but 6 is 1− 1

6 = 5
6 .

The probability of the first roll yielding the number 6 is 1
6 , but the

probability of the second roll yielding the number 6 is 5
6 ·

1
6 , as there

is only a 5
6 chance that the second roll will happen. This is because

for the second roll to happen, the first roll must not yield a 6. We
can continue this pattern such that for the N th roll,

pN =
1

6
·
(

5

6

)N−1
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Note that X has a countably infinite number of values, which are
1, 2, 3 · · · (1 roll, 2 rolls, etc.). Therefore,

E[X] = 1 · 1

6
+ 2 · 1

6
·
(

5

6

)1

+ 3 · 1

6
·
(

5

6

)2

+ · · ·

=
1

6

∞∑
n=1

n

(
5

6

)n−1

By (4.13). Notice that this an arithmetic-geometric progression,
which we have generalized in (4.10):

∞∑
n=1

[a+ (n− 1)b]rn−1 =
br

(1− r)2
+

a

1− r

We can evaluate our desired sum by setting a = 1, b = 1, r = 5
6 .

Thus,

E[X] =
1

6

∞∑
n=1

n

(
5

6

)n−1

=
1

6
(30 + 6)

= 6

This means that the expected number of rolls till one obtains a 6 is
six. This is intuitive as rolling the dice a large number of times, say
600 times, will yield about 600

6 = 100 6’s. Since the "gaps" between
the occurrences of the number 6 sum up to 600 and there are about
100 6’s, the average "gap" is 6 rolls.
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4.5 Telescoping Series

Definition

A telescoping series is a series whose partial sums only have
a fixed number of terms after cancellationa. This method of
cancelling terms in partial sums is known as the method of
differences. For infinite series, one must take the limit of the
partial sums.
More formally, let {an}∞n=1 be a sequence of real numbers,
then

N∑
n=1

an − an−1 = aN − a0

If limn→∞ an = 0, we can write:

∞∑
n=1

an − an−1 = −a0

aThomson, B. S., Bruckner, J. B., Bruckner, A. M. (2008). Ele-
mentary real analysis. Upper Saddle River, NJ: Prentice-Hall.

What does this look like? Let’s take a dive!

Example 8: Find
∞∑
n=1

1

n(n+ 1)

Solution

Consider the partial fraction decomposition:

1

n(n+ 1)
=

1

n
− 1

n+ 1

We therefore have:
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Figure 4.4: Plot of the partial sums

S =

∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

(
1

n
− 1

n+ 1

)

For telescoping series, it is often helpful to expand the partial sums
of the series:

SN =

(
1

1
−
�
��
1

2

)
+

(
�
��
1

2
−
�
��
1

3

)
+

(
�
��
1

3
−
�
��
1

4

)
+ · · ·+

(
�
��
1

N
− 1

N + 1

)

SN = 1− 1

N + 1

Note that SN denotes the N th partial sum. Therefore,

S = lim
N→∞

SN = 1
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Example 9: Define a sequence {Fn}∞n=0 such that the sequence
obeys Fn = Fn−1 + Fn−2 and F0 = F1 = 1. This sequence
is 1, 1, 2, 3, 5 · · · and is the infamous Fibonacci sequence. Evaluate
∞∑
n=1

1

Fn−1Fn+1

Figure 4.5: Plot of the partial sums. Notice that the series con-
verges very fast

Solution

Consider multiplying the summand by
Fn
Fn

,

S =

∞∑
n=1

Fn
Fn−1FnFn+1

Since Fn+1 = Fn + Fn−1 =⇒ Fn = Fn+1 − Fn−1, we can write:

S =

∞∑
n=1

Fn+1 − Fn−1
Fn−1FnFn+1
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By partial fraction decomposition,

S =

∞∑
n=1

(
1

FnFn−1
− 1

FnFn+1

)

Now, consider the partial sums of S,

SN =

(
1

F0F1
−
�
�
�1

F1F2

)
+

(
�
�
�1

F1F2
−
�
�
�1

F2F3

)
+ · · ·

+

(
��

�
��1

FN−1FN
− 1

FNFN+1

)

=
1

F0F1
− 1

FNFN+1
= 1− 1

FNFN+1

Taking the limit gives

S = lim
N→∞

SN = 1

Example 10: Define

SN =
1

42 − 4
+

1

62 − 4
+ · · ·+ 1

(2N)2 − 4

Find S10 and lim
N→∞

SN

Solution

As always, we will try to use the method of partial fraction decom-
position for problems like these. Since the problem is asking for
both the evaluation of SN for some arbitrary N as well as limN→∞ SN ,
it would be wise to derive a general expression for any SN . We be-
gin by expressing SN as:
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Figure 4.6: Plot of the partial sums

SN =

N∑
n=2

1

(2n)2 − 4

=

N∑
n=2

1

(2n− 2)(2n+ 2)

=
N∑
n=2

1

4

(
1

2n− 2
− 1

2n+ 2

)

=
1

8

N∑
n=2

(
1

n− 1
− 1

n+ 1

)
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=
1

8

[(
1

1
−
�
��
1

3

)
+

(
1

2
−
�
��
1

4

)
+

(
�
��
1

3
−
�
��
1

5

)
+

(
�
��
1

4
− 1

6

)
+ · · ·

+

(
1

N − 1
− 1

N + 1

)

It is easy to see that this sum telescopes, as only the terms 1
1 ,

1
2 ,−

1
N ,

and − 1
N+1 remain. Therefore,

SN =
1

8

(
3

2
− 1

N
− 1

N + 1

)
=

1

8

(
3

2
− 2N + 1

N(N + 1)

)

=⇒ S10 =
1

8

(
3

2
− 21

10 · 11

)
=

9

55
≈ 0.164

And,

lim
N→∞

SN =
1

8
· 3

2
=

3

16
= .1875

Notice that our telescoping sum was not of the form

∞∑
n=1

an − an−1

Instead, it was of the form

∞∑
n=1

an − an−2
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Since 1
n+1 and 1

n−1 are two terms apart. In general, for any con-
stant k ∈ N+, the series

∞∑
n=1

an − an−k

Telescopes.

Example 11: Find
N∑
n=1

n · n!

Solution

Notice that:

(n+ 1)! = n! (n+ 1) = n · n! +n!

=⇒ n · n! = (n+ 1)!−n!

Hence,

S =

N∑
n=1

n · n! =

N∑
n=1

(n+ 1)!−n!

= (2!−1! ) + (3!−2! ) + (4!−3! ) + · · ·+
(
(N + 1)!−N !

)
This sum telescopes,

∴ S = (N + 1)!−1
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4.6 Trigonometric Series

Many trigonometric series are also telescoping. The strategy in
evaluating these series is to utilize one or more trigonometric identi-
ties from the list of trigonometric identities in this book.

Example 12:3 Evaluate
∞∑
n=1

arctan

(
2

n2

)

Figure 4.7: Plot of the partial sums

Solution

Consider the trigonometric identity,

3This problem was proposed by Anglesio in 1993: J. Anglesio, Elementary
problem 10292, Amer. Math. Monthly 100, (1993), 291. It also appears in J.
W. L. Glaisher, A theorem in trigonometry, Quart. J. Math. 15, (1878), and im
S. L. Loney, Plane Trigonometry, Part II, Cambridge University Press, Cam-
bridge, 1893.
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tan(x± y) =
tanx± tan y

1∓ tanx tan y

Substituting x→ arctanx, y → arctan y gives:

tan(arctanx± arctan y) =
x± y
1∓ xy

Taking the arctangent of both sides,

arctanx± arctan y = arctan

(
x± y
1∓ xy

)
mod π (4.14)

Letting x = n+ 1, y = n− 1 gives:

arctan(n+ 1)− arctan(n− 1) = arctan

(
2

n2

)

Hence,

S =
∞∑
n=1

arctan

(
2

n2

)

=
∞∑
n=1

(
arctan(n+ 1)− arctan(n− 1)

)
We have to be careful here, as limN→∞ arctanN 6= 0. By inspecting
the partial sums, we have:

SN =
N∑
n=1

(
arctan(n+ 1)− arctan(n− 1)

)
= − arctan(0)− arctan(1) + arctan(N) + arctan(N + 1)
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And,
S = lim

N→∞
SN

= lim
N→∞

[
− arctan(0)− arctan(1) + arctan(N) + arctan(N + 1)

]
= −π

4
+ 2 lim

N→∞
[arctanN ]

= π − π

4

=
3π

4

Challenge Problem

Prove

∞∑
n=1

arctan

(
x2

n2

)
=
π

4
− arctan

tanh
(
πx√
2

)
tan

(
πx√
2

)


Note that the case x =
√

2 gives:

∞∑
n=1

arctan

(
2

n2

)
=
π

4
− arctan

(
tanh (π)

tan (π)

)

=
π

4
+
π

2
=

3π

4

Example 13: Evaluate
∞∑
n=0

arctan

(
1

n2 + n+ 1

)

Solution
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Figure 4.8: Plot of the partial sums

From (4.14) we have:

arctan

(
1

n

)
− arctan

(
1

n+ 1

)
= arctan

 1
n −

1
n+1

1 + 1
n(n+1)

 mod π

= arctan

 1

n(n+ 1)
(

1 + 1
n(n+1)

)


= arctan

(
1

n2 + n+ 1

)
Thus,

S =

∞∑
n=0

arctan

(
1

n2 + n+ 1

)
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= arctan(1) +

∞∑
n=1

arctan

(
1

n2 + n+ 1

)

=
π

4
+
∞∑
n=1

(
arctan

(
1

n

)
− arctan

(
1

n+ 1

))

=
π

4
+

[
lim
N→∞

arctan(1)− arctan

(
1

N + 1

)]

=
π

2

In this chapter, we saw how powerful our algebraic tools are in se-
ries. We also got a glimpse into how powerful calculus can be in
the evaluation of series through our extensive use of the limit. In
the next chapters, we will use the tools we built here to tackle more
complex problems.

4.7 Exercise Problems

1) Prove that for any arithmetic series,

a1 + a2 + · · ·+ an =
n(a1 + an)

2

2) Evaluate
∞∑
n=1

1

n(n+ 2)(n+ 4)

3) Find the value of
2019∑
n=1

1 + 2 + 3 + · · ·+ n

13 + 23 + 33 + · · ·+ 20193
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4) Find the value of
k∑

n=1

n! (n2 + n+ 1)

5) Prove that

k∑
n=1

cosn <
1

2 sin
(
1/2
) − 1

2

Using telescoping series (Hint: Multiply the sum by 2 sin
(
1/2
)
and

use the identity 2 sinα cosβ = sin(α+ β)− sin(α− β)).

6) Find the value of
∞∑
n=0

sin3(3n)

3n
(Hint: Use the identity sin 3x =

3 sinx− 4 sin3 x).

7) Evaluate
2019∑
n=1

ln

(
n

n2 + 3n+ 2

)
(Hint: Factor and use the prop-

erties of logarithms to your advantage).
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5.1 Introduction

As often as we would like to apply formulas blindlessly, we must be
especially careful when dealing with series. Take for example the
formula for the geometric series

∞∑
n=0

rn =
1

1− r
(5.1)

Blindlessly applying the formula above would give the non-sensical
result that

∞∑
n=0

2n = 1 + 2 + 4 + 8 + · · · = 1

1− 2
= −1

This is obviously not true as the series on the LHS is blatantly di-
vergent! The error arises in the fact that (5.1) only holds true for
|r|< 1, as geometric series only converge for |r|< 1. But, how do we
define convergence? More specifically, how do we say that a partic-
ular series converges to a value S? To invoke rigor into this, we will
introduce the following definition:

Definition

A series S =
∑∞

k=1 ak is said to be convergent if the sequence
of its partial sums approaches a limit. Equivalently, the se-
ries S converges if there exists a number L such that for any
arbitrarily small ε there exists some number N such that for
all n ≥ N ,

|Sn − L| < ε

If L exists, it must be unique, and is the sum of the series.

To clarify, given an infinite sequence, {ak}∞k=1, the n
th partial sum



5.1. INTRODUCTION 169

is defined as the sum of the first n terms of the sequence:

Sn =

n∑
k=1

ak

Another territory that is prone to error are conditionally conver-
gent series, or series that do not converge absolutely. We can define
such series as follows:

Definition

A series
∑∞

n=0 an is said to be conditionally convergent if:

lim
N→∞

N∑
n=0

an = L

For some finite L but the series
∑∞

n=0|an| diverges.

One example of a conditionally convergent series is

∞∑
n=1

(−1)n lnn

n
= γ ln 2− (ln 2)2

2

Another example is given by the well-known alternating harmonic
sum:

∞∑
n=1

(−1)n

n
= − ln 2

Which converges only conditionally, as the harmonic series is diver-
gent.
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The harmonic series is given by

∞∑
n=1

1

n

Many students new to the topic of series find the divergence of this
series counterintuitive. This highlights the huge misconception that
if limn→∞ an = 0 then the series

∑∞
n=1 an converges. This is not

true at all! In fact, many well-known divergent series have this
property.

Many proofs exist regarding the divergence of the harmonic series,
but in this book we will present a simple proof dating back almost
700 years.

Proposition. The harmonic sum is divergent

Proof. This classical proof is due to Nicole Oresme, a well-esteemed
medieval philosopher1. Oresme considers the sequence {H2k}

∞
k=0,

where Hk =
∑k

n=1
1
n is the kth harmonic number:

H1 = 1

H2 = 1 +
1

2
= 1 + 1

(
1

2

)
H4 =

(
1 +

1

2

)
+

(
1

3
+

1

4

)
>

(
1 +

1

2

)
+

(
1

4
+

1

4

)
= 1 + 2

(
1

2

)
...

We can easily deduce that H2k ≥ 1 + k
(
1
2

)
. Since the subsequence

1Oresme, Nicole (c. 1360). Quaestiones super Geometriam Euclidis [Ques-
tions concerning Euclid’s Geometry].
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is unbounded, the harmonic series

∞∑
n=1

1

n
= lim

k→∞
H2k

Diverges. The same argument can be extended to any Hαk with
α ∈ N.

A particularly interesting theorem on conditionally convergent se-
ries is the Riemann series theorem:

Theorem

The Riemann series theorem, sometimes also called the Rie-
mann rearrangement theorem, states that if an infinite series
of real numbers is conditionally convergent, then its terms
can be arranged such that the rearranged series converges to
an arbitrary real number and can even diverge.

Equivalently, if the series
∑∞

n=1 an is conditionally convergent, then
there exists some permuation, given by the function p, such that:

∞∑
n=1

ap(n) = L (5.2)

Where L ∈ R ∪ {−∞,∞}.

Example. Consider the sequence {an} = (−1)n−1

n and its correspond-
ing series,

S =
∞∑
n=1

(−1)n−1

n

= 1− 1

2
+

1

3
− 1

4
+ · · · = − ln 2 (5.3)
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The value ln 2 comes from the Taylor series of ln(1 + x). Consider
rearranging the series as:

Srearranged =

(
1− 1

2

)
−
(

1

4

)
+

(
1

3
− 1

6

)
−
(

1

8

)
+ · · ·

Equivalently,

Srearranged =

(
1

2k − 1
− 1

2(2k − 1)

)
− 1

4k

Where k ∈ N. Notice that all elements of the sequence {an} are
found in Srearranged, but are in a different order. Also,

Srearranged =
1

2
− 1

4
+

1

6
+ · · ·

=
1

2

(
1− 1

2
+

1

3
+ · · ·

)

=
1

2

∞∑
n=1

(−1)n−1

n

=
ln 2

2

Which is indeed a different value from (5.3)!

5.2 Ways to Prove Convergence

5.2.1 The Comparison Test

Description. Let {an}∞n=1 and {bn}∞n=1 be two sequences of non-
negative numbers. If an ≤ bn for all n and

∑∞
n=1 bn converges, then
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∑∞
n=1 an converges. On the other hand, if an ≥ bn for all n and∑∞
n=1 bn diverges, then

∑∞
n=1 an diverges.

Proof. The proof is trivial and is left as an exercise to the reader.

5.2.2 The Ratio Test

Description. First published by the French mathematician Jean le
Rond d’Alembert, this test is also called d’Alembert’s ratio test2.
Given a sequence of complex numbers {an}∞n=1 where an 6= 0 for
large n, the ratio test is concerned with the limit:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
It states that:

• If L > 1, then the series diverges.

• If L < 1, then the series converges.

• If L = 1, then the ratio test is inconclusive.

Proof. Although many variations of the ratio test exist, we will
present a proof of the original ratio test defined above3. Consider:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

2Zwillinger, D. (Ed.). "Convergence Tests." §1.3.3 in CRC Standard Math-
ematical Tables and Formulae, 30th ed. Boca Raton, FL: CRC Press, p. 32,
1996.

3Bromwich, T. J. I’A (1908). An Introduction To The Theory of Infinite
Series. Merchant Books.
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We will attempt to show convergence by showing that the terms
of the sequence {an}∞n=1 will eventually be less than the terms of a
convergent geometric series. Since L < 1, there is some number r
such that

L < r < 1

Therefore, for some sufficiently large N , for any n ≥ N we have

∣∣∣∣an+1

an

∣∣∣∣ < r

∴ |an+1| < r|an|

Consider repeating this inequality as follows

|an+1| < r |an|
|an+2| < r |an+1| < r2 |an|
|an+3| < r |an+2| < r3 |an|

...

|an+k| < r |an+k−1| < rk |an|

Hence for any k ∈ N

|an+k| < rk|an| (5.4)

Now, consider the series

∞∑
k=N+1

ak =
∞∑
k=1

aN+k

By (5.4), we can write
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∞∑
k=1

aN+k <

∞∑
k=1

rk|aN |

Notice that we can write the RHS as

∞∑
k=1

rk|aN | = |aN |
∞∑
k=1

rk

Which converges since r < 1. Therefore,
∑∞

k=1 aN+k is convergent
by the comparison test. Because

∞∑
n=1

an =
N∑
n=1

an +
∞∑
k=1

aN+k

And the underlined sum is a finite sum of real numbers, we can
conclude that the sum

∑∞
n=1 an is convergent. Now, to prove the

case when L > 1 is divergent, recall that:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
Because L > 1, for sufficiently large N , all n ≥ N must satisfy:

∣∣∣∣an+1

an

∣∣∣∣ > 1

|an+1| > |an| (5.5)

By (5.5), we know that:

lim
n→∞

|an| > 0



176 CHAPTER 5. PREREQUISITES

Because the absolute value of the terms in the sequence {an}∞n=1

gets larger and larger. Therefore, the series
∑∞

n=1 an diverges. The
special case when L = 1 is inconclusive, and can be easily shown
through the two sequences:

{an}∞n=1 =
1

n

{bn}∞n=1 =
(−1)n

n

(5.6)

And their corresponding series,

∞∑
n=1

1

n
=⇒ Diverges

∞∑
n=1

(−1)n

n
=⇒ Converges

Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = 1

5.2.3 The Integral Test

Description. Let f(x) be a continuous, positive, monotonically de-
creasing function on the interval [b,∞] where b ∈ Z. Then the infi-
nite series

∑∞
n=b f(n) converges if and only if the integral

∫∞
b f(x) dx

is finite. If the integral diverges, then the corresponding series also
diverges.

Proof. Without loss of generality, let b = 1. Since we can just shift
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the index of a series, proving the case when b = 1 is sufficient to
prove the general case for any b ∈ Z.

In this proof, we will prove the integral test for strictly decreasing
f(x). However, the theorem holds true for any monotonically de-
creasing f(x) (a monotonically decreasing function does not have to
be exclusively decreasing, only non-increasing).

Consider the plot below:

Figure 5.1: Plot of the right Riemann sums of an arbitrary strictly
decreasing function defined on the interval [1,∞]. The width of the
rectangles is a constant 1.

Define a sequence such that {an}∞n=1 = f(n). Hence,

f(2) = a2, f(3) = a3, f(4) = a4 · · ·

The approximate area under the curve, or the improper integral on
[1,∞) is:
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I =

∫ ∞
1

f(x) dx ≈ f(2) + f(3) + · · ·

= a2 + a3 + a4 + · · ·

=
∞∑
n=2

an

However, this underestimates I as f(x) is strictly decreasing on
[1,∞), which implies:∫ N+1

N
f(x) dx > f(N + 1) (5.7)

And,

∫ ∞
1

f(x)dx >

∞∑
n=2

f(n) =

∞∑
n=2

an

Since f(x) > 0 on [1,∞), we know that:

∫ N

1
f(x) dx <

∫ ∞
1

f(x) dx

Thus,

N∑
n=2

an <

∫ N

1
f(x) dx <

∫ ∞
1

f(x) dx (5.8)

By (5.7). To get our desired series,
∑∞

n=1 an, we can add a1:

N∑
n=1

an < a1 +

∫ N

1
f(x) dx = L (5.9)
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Now, define the partial sums as

{SN} =
N∑
n=1

an

By (5.9), we know the sequence {SN} is bounded above by L. Also,
since an > 0, we have that SN < SN+1 for all N . We now know
by the monotone convergence theorem that our sequence {SN} con-
verges, and that our corresponding series

∑∞
n=1 an converges.

Theorem

Informally, the monotone convergence theorem states that if
a sequence is increasing and bounded above by a supremum,
then the sequence will converge to the supremum. On the
other hand, if a sequence is decreasing and is bounded below
by an infimum, it will converge to the infimum.

Now, what if our integral diverges? Consider the plot below:
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Figure 5.2: Plot of the left Riemann sums of an arbitrary monoton-
ically decreasing function defined on the interval [1,∞]. The width
of the rectangles is a constant 1.

In this case, the approximate area under the curve on the interval
[1, N ] given by the Riemann sum is an overestimate. Therefore,

∫ N

1
f(x) dx <

N−1∑
n=1

f(n)

Since an = f(n),

∫ N

1
f(x) dx < SN−1 (5.10)

If the integral diverges, as N →∞, then
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∫ N

1
f(x) dx→∞

(5.10) then shows that SN → ∞ as well. Since the sequence of
partial sums is divergent, so is the corresponding series,

∑∞
n=1 an.

5.2.4 The Root Test

Description. Let {an}∞n=1 be a sequence of real numbers. Define:

L = lim
n→∞

n
√
|an|

And,

S =
∞∑
n=1

an

We then have:

1. If L < 1, then the series S is absolutely convergent.

2. If L > 1, then the series S diverges.

3. If L = 1, then the root test is inconclusive. In other words,
S can be absolutely convergent, conditionally convergent, or
divergent.

Proof. Consider when L < 1. Let r be some number such that
L < r < 1. Because
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L = lim
n→∞

n
√
|an|

We can write:

n
√
|an| < r

=⇒ rn > |an|

For some n ≥ N and sufficiently large N . Since r < 1, the series:

∞∑
n=N

rn

Converges. Because rn > |an| for all n ≥ N , the series

∞∑
n=N

|an|

Also converges by the comparison test. Therefore, the series

∞∑
n=1

an =

N−1∑
n=1

|an|+
∞∑
n=N

|an|

Converges since
∑N−1

n=1 |an| is a finite sum of finite terms.

Now, consider the case when L > 1. For some sufficiently large N ,
any n ≥ N satisfies:

n
√
|an| > 1
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=⇒ |an| > 1

Hence,

lim
n→∞

|an| > 0

∴ lim
n→∞

an 6= 0

We can therefore conclude that the series
∑∞

n=1 an diverges since
the sequence {an}∞n=1 does not converge to 0.

The case when L = 1 is inconclusive, similar to what we saw in the
ratio test. To show this, we simply need the two sequences we have
provided in (5.6):

{an}∞n=1 =
1

n

{bn}∞n=1 =
(−1)n

n

And their corresponding series,

∞∑
n=1

1

n
=⇒ Diverges

∞∑
n=1

(−1)n

n
=⇒ Converges

Since
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lim
n→∞

n
√
|an| = lim

n→∞
n
√
|bn| = 1

We know that the case L = 1 is inconclusive.

Note that the root test is stronger than the ratio test.

5.2.5 Dirichlet’s Test

The reader equipped with a standard knowledge of calculus should
already be familiar with the traditional methods of proving con-
vergence: ratio test, integral test, direct comparison, etc. These
methods, although powerful, are sometimes obsolete to series evalu-
ated here. One powerful technique is Dirichlet’s test. Dirichlet’s
test, named after the German mathematician Peter Dirichlet, is a
powerful method for testing the convergence of series4.

4Demonstration d’un theoreme d’Abel. Journal de mathematiques pures et
appliquees 2nd series, tome 7 (1862), p. 253-255 Archived 2011-07-21 at the
Wayback Machine.
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Theorem

Dirichlet’s test states that if {an}∞n=1 is a sequence of real
numbers and {bn}∞n=1 is a sequence of complex numbers sat-
isfying that:

• lim
n→∞

an = 0

• an+1 ≤ an

•
∣∣∣∑k

n=1 bn

∣∣∣ ≤ L for all k ∈ N

Where L is a constant, then the series

∞∑
n=1

anbn

Converges. Notice that if bn = (−1)n, then Dirichlet’s test is
simply the alternating series test often encountered in intro-
ductory calculus courses.

5.3 Interchanging Summation and Integra-
tion

Regarding series and integrals, one must be very careful in inter-
changing the two. In general, for an infinite sequence of functions
{fn},

∫ ∑
n

fn dx 6=
∑
n

∫
fn dx (5.11)

Notice the word "infinite." You might be wondering why finite
series get a pass, which is due to the additive property of inte-
grals. However, since ∞ is not a number, when we write an infi-
nite sum we are effectively taking the limit as the bound of the sum
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approaches infinity. Without loss of generality, let {fn} begin at
n = 1. (5.11) is then effectively:

∫
lim
N→∞

N∑
n=1

fn dx 6= lim
N→∞

N∑
n=1

∫
fn dx

It is the interchange of the limit and the integral we are concerned
with. Even though in most cases the interchange is valid, one must
still be careful. For example,

∞∑
n=0

∫ 2π

0
sin(x+ n) dx (5.12)

=
∞∑
n=0

[
− cos(x+ n)

]2π
0

∞∑
n=0

( cos(x)− cos(x+ 2π))

=

∞∑
n=0

0 = 0

Now, consider interchanging summation and integration in (5.12) to
give:

∫ 2π

0

∞∑
n=0

sin(x+ n) dx

Since

∞∑
n=0

sin(x+ n)
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Diverges for all x, the integral diverges as well. Well, this is con-
tradictory! This example serves as one of many in which the inter-
change is not valid.

But, what criteria did our example in (5.12) not meet? Instead of
investigating each case of (5.11), we can present a general theorem
for any sequence of functions {fn} on any interval I. One such the-
orem is the Lebesgue dominated convergence theorem.

Theorem

Let {fn}∞n=1 be a sequence of Lebesgue integrable functions
that converge to a limit function f almost everywhere on an
interval I. Suppose there exists some Lebesgue integrable
function g such that |fn| < g almost everywhere on I and for
all n ∈ N. Then, f is Lebesgue integrable on I and

lim
n→∞

∫
I
fn(x) dx =

∫
I

lim
n→∞

fn(x) dx =

∫
I
f(x) dx

This theorem is perhaps the most hefty in the book, so let us break
it down. First off, what is meant by a "Lebesgue integrable func-
tion"?

Although the general definition requires a sizeable amount of mea-
sure theory, we will present a definition that will do for all the ex-
amples we deal with in this book. We first need to establish the no-
tion of a measurable function. In our case, we are trying to employ
the Lebesgue measure. A measure can be intuitively understood as
the "size" of a set. It is a way of systematically assigning numbers
to sets to represent their sizes.

The Lebesgue measure is the measure that coincides most with gen-
eral notions of "size." For example, the set of all points in [0, 1] has
Lebesgue measure equal to its length on the number line, which is
1. Since we are only dealing with intervals, we can simply say that
an interval [a, b] has a Lebesgue measure b− a. For two dimensional
intervals, [a, b]× [c, d], it coincides with area.
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If we are using the Lebesgue definition of measure, then we can say
a function f is measurable on I if f is continuous on I.

Theorem

If f(x) is a bounded function defined on some closed interval
I such that ∫

I
f(x) dx

Exists in the Riemann sense, then f is also Lebesgue inte-
grable.

Now, on to the definition of almost everywhere. Intuitively, a prop-
erty that holds almost everywhere is simply just that. Formally,
this notion can be expressed by using the concept of measure. If
a property holds almost everywhere on an interval I, the measure
of the set where the property does not hold is 0. This serves us by
letting us deal with functions diverging at endpoints.

Now, we will present a series reformulation of the dominated con-
vergence theorem.
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Theorem

Let {fn}∞n=1 be a sequence of Lebesgue integrable functions
such that each fn is nonnegative on I and the sum

∞∑
n=1

fn(x)

Converges almost everywhere on I to a limit function f .
Suppose there exists some Lebesgue integrable function g
such that

∣∣f(x)
∣∣ ≤ g(x) almost everywhere on I. Then, f is

Lebesgue integrable on I and∫
I
f(x) dx =

∫
I

∞∑
n=1

fn(x) dx =

∞∑
n=1

∫
I
fn(x) dx

To see this in action, consider the integral

I =

∫ 1

0

dx

1 + x

This integral trivially converges to ln 2. But, perhaps we want to
substitute the power series expansion

1

1 + x
=
∞∑
k=0

(−1)kxk

To get

I =

∫ 1

0

∞∑
k=0

(−1)kxk dx

=

∫ 1

0
lim
n→∞

n∑
k=0

(−1)kxk dx

Now, is the interchange here justified? Well, all terms of the se-
quence
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{fn} =
n∑
k=0

(−1)kxk

Are nonnegative. Moreover, the sequence does converge almost ev-

erywhere on [0, 1] to
1

1 + x
. It does not converge at x = 1. More-

over, f(x) is "dominated" by g(x) = 1, i.e.

n∑
k=0

(−1)kxk ≤ 1

Therefore, we are jusified in interchanging the limit (infinite sum-
mation) and integral! In doing so we obtain:

I = lim
n→∞

n∑
k=0

∫ 1

0
(−1)kxk dx

= lim
n→∞

n∑
k=0

(−1)k

k + 1

Which is the alternating harmonic series that equals the same value
of ln 2.
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6.1 Introduction

The most widely used series are the power series taught in intro-
ductory calculus courses. A classic example is:

1

1− x
= 1 + x+ x2 + · · · =

∞∑
n=0

xn (6.1)

Notice that this equation is equivalent to the infinite geometric sum
formula. We can do a lot with this series. Try substituting x → −x
to get:

1

1 + x
= 1− x+ x2 − x3 + · · · =

∞∑
n=0

(−1)nxn (6.2)

We can differentiate both sides to obtain:

− 1

(1 + x)2
= −1 + 2x− 3x2 + · · · =

∞∑
n=0

n · (−1)nxn−1

We can also integrate! Integrating both sides of (6.1) gives

ln(1− x) = −
∞∑
n=0

xn+1

n+ 1

Re-indexing,

ln(1− x) = −
∞∑
n=1

xn

n
(6.3)

We can also substitute x→ −x in (6.3) to obtain:



6.2. SOME PROBLEMS 193

ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n
(6.4)

It is vital to realize that these powerful tools have their limitations
too. It is important to check whether these sums converge before
proceeding and using them on a specified interval. For example
(6.1), only converges for |x|< 1. Using (6.1) for x = 5, for exam-
ple, would yield nonsensical results.

6.2 Some Problems

Example 1: Evaluate
∞∑
n=1

n2

2n

Figure 6.1: Plot of the partial sums

Solution

The series converges by the ratio test. Using (6.1), we have:
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x

1− x
=
∞∑
n=1

xn

Differentiating both sides,

1

(1− x)2
=

∞∑
n=1

nxn−1

We can multiply both sides by x to get:

x

(1− x)2
=
∞∑
n=1

nxn

We can differentiate and multiply by x again to get:

x+ x2

(1− x)3
=

∞∑
n=1

n2xn

Notice that if x =
1

2
, we get our desired sum! Therefore,

∞∑
n=1

n2

2n
=

1
2 +

(
1
2

)2
(
1
2

)3
= 6

Example 2: Find the value of
∞∑
n=1

1

2n · n2

Solution
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Figure 6.2: Plot of the partial sums

Notice that we can express our desired sum as

S =

∞∑
n=1

1

2n · n2

=

∞∑
n=1

∫ 1
2

0

xn−1

n
dx

Using the dominated convergence theorem, we can switch the order
of integration and summation to obtain

=

∫ 1
2

0

∞∑
n=1

xn−1

n
dx

= −
∫ 1

2

0

ln(1− x)

x
dx

Where in the last step we used the power series expansion for ln(1− x).
We can integrate by parts with u = ln(1− x),dv = dx

x to get
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S = −
[
lnx ln(1− x)

] 1
2
0

+

∫ 1
2

0

lnx

x− 1
dx

Since

ln(1 + x) =

∞∑
n=0

(−1)nxn+1

n+ 1

We can substitute x→ x− 1 to get:

lnx =

∞∑
n=0

(−1)n(x− 1)n+1

n+ 1

Plugging that series into S,

S = − ln2

(
1

2

)
+

∫ 1
2

0

∞∑
n=0

(−1)n(x− 1)n

n+ 1
dx

We can now use the dominated convergence theorem again,

S = − ln2

(
1

2

)
+
∞∑
n=0

∫ 1
2

0

(−1)n(x− 1)n

n+ 1
dx

= − ln2

(
1

2

)
+

∞∑
n=0

(−1)n

n+ 1

[
(x− 1)n+1

n+ 1

] 1
2

0

= − ln2

(
1

2

)
−
∞∑
n=0

1

2n+1(n+ 1)2
+

∞∑
n=0

1

(n+ 1)2

Re-indexing both sums,

S = − ln2

(
1

2

)
−
∞∑
n=1

1

2n · n2︸ ︷︷ ︸
=S

+
∞∑
n=1

1

n2︸ ︷︷ ︸
=ζ(2)
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=⇒ S = − ln2

(
1

2

)
− S +

π2

6

Finally solving for S,

2S = − ln2

(
1

2

)
+
π2

6

S =
π2

12
− ln2 2

2

Example 3: Define f(n) =

∫ 1

0

ln(1− xn)

x
dx. Evaluate

∞∑
n=1

f(n)

n

Figure 6.3: Plot of the partial sums

Solution

Consider the power series expansion of ln(1− x), (6.3):

ln(1− x) = −
∞∑
k=1

xk

k
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=⇒ f(n) = −
∫ 1

0

∑∞
k=1

(xn)k

k

x
dx

= −
∫ 1

0

∞∑
k=1

xnk−1

k
dx

By the dominated convergence theorem, we can interchange sum-
mation and integration to obtain

f(n) = −
∞∑
k=1

∫ 1

0

xnk−1

k
dx

In evaluating the integral we obtain:

f(n) = −
∞∑
k=1

[
xnk

nk2

]1
0

= − 1

n

∞∑
k=1

1

k2

= −ζ(2)

n

Plugging in the value of ζ(2),

∴
∫ 1

0

ln(1− xn)

x
dx = −π

2

6n

We can now evaluate our desired series:

S =
∞∑
n=1

f(n)

n

= −π
2

6

∞∑
n=1

1

n2
= −π

4

36
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Example 4: A crazy ant is standing on the origin. It begins by
walking 1 unit in the +x direction and then turns 60◦ counterclock-
wise and walks 1

2 units in that direction. The ant then turns an-
other 60◦ and walks 1

3 units in that direction. The ant keeps doing
this endlessly. What is the ant’s final position?

Figure 6.4: Visualization of the ant’s path

Solution

Instead of using the Cartesian coordinate system, we will use the
polar coordinate system to make calculations easier. This allows us
to express each move the ant makes in the form

1

n
[cos θ + i sin θ]

Where 1
n denotes the distance travelled and θ denotes the angle at

which the ant is travelling.

The final position of the ant is simply the sum of the displace-
ments. Denote the final position as P ,
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P = 1
(
cos(0) + i sin(0)

)
+

1

2

(
cos

(
π

3

)
+ i sin

(
π

3

))

+
1

3

(
cos

(
2π

3

)
+ i sin

(
2π

3

))
+ · · ·

Now seems like an opportune moment to use Euler’s formula! (See
Appendix A for more.)

eix = cosx+ i sinx

Applying this formula to P gives

P =

∞∑
n=1

e
i(n−1)π

3

n

This looks very similar to the power series expansion for ln(1− x).
In fact, the power series expansion of ln(1− x) divided by x is

ln(1− x)

x
= −

∞∑
n=1

xn−1

n

In our desired sum, x = e
iπ
3 , therefore,

P = −
ln
(

1− e
iπ
3

)
e
iπ
3

=
iπ
3

1+i
√
3

2

Simplifying using the complex conjugate of the denominator gives
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P =
π

2
√

3
+
πi

6

We can translate our result to the Cartesian plane and determine
that our ant friend will be at:

P =

(
π

2
√

3
,
π

6

)

A whole π
3 ≈ 1.05 units away!

Example 5: Evaluate
∞∑
n=1

(
1

4n− 1
− 1

4n

)

Figure 6.5: Plot of the partial sums

Solution

Although this series might first look like it is a telescoping one, it is
not. One can easily see this by expanding the series,
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S =

(
1

4− 1
− 1

4

)
+

(
1

4 · 2− 1
− 1

4 · 2

)
+

(
1

4 · 3− 1
− 1

4 · 3

)
+ · · ·

No terms cancel out. Therefore, we have to think of a different ap-
proach. Consider:

1

4n− 1
− 1

4n
=

∫ 1

0
x4n−2dx−

∫ 1

0
x4n−1dx

=

∫ 1

0
x4n−2 − x4n−1dx

Using the above equation, we can then write our series as a sum of
integrals. We can then use the dominated convergence theorem to
interchange the order of summation and integration and obtain a
geometric series that is easy to evaluate. We begin with

S =
∞∑
n=1

∫ 1

0
x4n−2 + x4n−1dx

=

∫ 1

0

∞∑
n=1

x4n−2 − x4n−1dx

=

∫ 1

0

 ∞∑
n=1

(
x4
)n

x2
−
∞∑
n=1

(
x4
)n
x

 dx

Evaluating the series above,

S =

∫ 1

0

1

x2
· x4

1− x4
− 1

x
· x4

1− x4
dx

=

∫ 1

0

x2

1− x4
− x3

1− x4
dx
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=

∫ 1

0

x2 (1− x)

1− x4
dx

Using

1− x4 = (1− x2)(1 + x2) = (1− x)(1 + x+ x2 + x3)

We can write

S =

∫ 1

0

x2

x3 + x2 + x+ 1
dx

Using the method of partial fractions,

S =
1

2

∫ 1

0

x− 1

x2 + 1
+

1

x+ 1
dx

=
1

2

[
ln|x+ 1|

]1
0

+
1

2

∫ 1

0

x− 1

x2 + 1
dx

=
ln 2

2
+

1

2

∫ 1

0

x

x2 + 1
dx− 1

2

∫ 1

0

1

x2 + 1
dx

Both integrals are easy to evaluate. Therefore,

S =
ln 2

2
+

ln 2

4
− π

8

=
3 ln 2

4
− π

8



204 CHAPTER 6. EVALUATING SERIES

6.2.1 Harmonic Numbers

Definition

Recall the harmonic numbers, usually denoted as Hn, from
the definition of the Euler-Mascheroni constant (See note in
(1.8)). They are defined as the partial sum of the harmonic
series:

Hn =

n∑
k=1

1

k
(6.5)

Figure 6.6: Plot of the partial sums of the harmonic series, i.e. the
harmonic numbers

We can try to define an integral form of the harmonic numbers.
Notice that

∫ 1

0
xk−1dx =

1

k
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Therefore,

Hn =
n∑
k=1

∫ 1

0
xk−1dx

Since we have a finite sum, we can safely interchange summation
and integration to obtain

Hn =

∫ 1

0

n∑
k=1

xk−1dx

We can apply the geometric sum formula here

Hn =

∫ 1

0

1− xn

1− x
dx (6.6)

Indeed, this form is the well-known extension of the harmonic num-
bers to the complex plane other than the negative integers via ana-
lytic continuation.

Example 6: Prove that Hn = n
∞∑
k=1

1

k(n+ k)

Note that for any integer n we have

lim
x→∞

Hx −Hn+x = 0

We can add Hn to both sides to obtain

Hn = lim
x→∞

Hx − (Hn+x −Hn)
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Notice that Hn+x − Hn is simply the sum 1
n+1 + 1

n+2 + · · · + 1
n+x .

Therefore,

Hn = lim
x→∞

x∑
k=1

1

k
−

x∑
k=1

1

n+ k
(6.7)

= lim
x→∞

x∑
k=1

(
1

k
− 1

n+ k

)

= lim
x→∞

x∑
k=1

n

k(n+ k)

∴ Hn = n

∞∑
k=1

1

k(n+ k)
(6.8)

We can derive more identities about harmonic numbers.

Theorem

The generating function for the harmonic numbers is given
by:

∞∑
n=1

Hnx
n =

ln(1− x)

x− 1
(6.9)

For any |x|< 1.

Proof. Consider the definition of the harmonic numbers:

Hn = Hn−1 +
1

n

∴ Hn −Hn−1 =
1

n

Multiplying both sides by xn,
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Hnx
n −Hn−1x

n =
xn

n

Summing both sides from n = 1 to ∞,

∞∑
n=1

Hnx
n −

∞∑
n=1

Hn−1x
n =

∞∑
n=1

xn

n

Notice that the RHS is − ln(1− x). Therefore,

∞∑
n=1

Hnx
n −

∞∑
n=1

Hn−1x
n = − ln(1− x)

Factoring out an x from the second sum,
∞∑
n=1

Hnx
n − x

∞∑
n=1

Hn−1x
n−1 = − ln(1− x)

Since H0 = 0,

∞∑
n=1

Hnx
n =

∞∑
n=1

Hn−1x
n−1

And,

(1− x)
∞∑
n=1

Hnx
n = − ln(1− x)

Therefore,

∞∑
n=1

Hnx
n =

ln(1− x)

x− 1
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Example 7: Evaluate
∞∑
n=1

Hn

2n(n+ 1)

Figure 6.7: Plot of the partial sums

Solution

The series converges by the ratio test. Consider (6.9)

∞∑
n=1

Hnx
n =

ln(1− x)

x− 1

Integrating both sides from x = 0 to x = 1
2 ,

∫ 1
2

0

∞∑
n=1

Hnx
ndx =

∫ 1
2

0

ln(1− x)

x− 1
dx
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We can now use the dominated convergence theorem to interchange
summation and integration,

∞∑
n=1

∫ 1
2

0
Hnx

ndx =

∫ 1
2

0

ln(1− x)

x− 1
dx

∞∑
n=1

Hn

[
xn+1

n+ 1

] 1
2

0

=

∫ 1
2

0

ln(1− x)

x− 1
dx

∞∑
n=1

Hn

2n+1(n+ 1)
= −

∫ 1
2

0

ln(1− x)

1− x
dx︸ ︷︷ ︸

I

(6.10)

For the integral on the RHS, consider IBP with u = ln(1− x), dv =
dx
1−x :

−I =

∫ 1
2

0

ln(1− x)

1− x
dx =

[
ln2(1− x)

] 1
2

0
−
∫ 1

2

0

ln(1− x)

1− x
dx︸ ︷︷ ︸

−I

Hence,

−2I =
[
ln2(1− x)

] 1
2

0

∴ I =
ln2 2

2

Plugging I back into (6.10) gives:

∞∑
n=1

Hn

2n+1(n+ 1)
=

ln2 2

2
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∴
∞∑
n=1

Hn

2n(n+ 1)
= ln2 2

Example 8: Evaluate Sn =

n∑
k=1

(−1)k
(
n
k

)
k

Figure 6.8: Plot of Sn values

Solution

Recall the statement of the binomial theorem:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk

We therefore have

(1− x)n =

n∑
k=0

(
n

k

)
(−x)k
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∴
n∑
k=1

(
n

k

)
(−x)k = (1− x)n − 1

Dividing by x then gives

n∑
k=1

(
n

k

)
(−1)kxk−1 =

(1− x)n − 1

x

Integrating both sides from x = 0 to x = 1,

∫ 1

0

n∑
k=1

(
n

k

)
(−1)kxk−1dx =

∫ 1

0

(1− x)n − 1

x
dx

Since our sum on the LHS is a finite sum, we can safely interchange
summation and integration

n∑
k=1

(−1)k
(
n

k

)∫ 1

0
xk−1dx =

∫ 1

0

(1− x)n − 1

x
dx

n∑
k=1

(−1)k
(
n
k

)
k

=

∫ 1

0

(1− x)n − 1

x
dx

Using (2.1), we can write

n∑
k=1

(−1)k
(
n
k

)
k

=

∫ 1

0

xn − 1

1− x
dx

By (6.6), this is simply −Hn! We can then express our sum as
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n∑
k=1

(−1)k
(
n
k

)
k

= −Hn = −
n∑
k=1

1

k

This could also be a nice proof for the divergence of the harmonic
series, as the series on the left diverges as n→∞.

Example 9: Evaluate
∞∑
n=1

Hn

n3

Solution

Consider the result in (6.8):

Hn =
∞∑
k=1

n

k(k + n)

We can then express our sum as

S =
∞∑
n=1

Hn

n3

=

∞∑
n=1

1

n3

∞∑
k=1

n

k(k + n)

=

∞∑
n=1

∞∑
k=1

1

n2k(k + n)

By symmetry,

∞∑
n=1

∞∑
k=1

1

n2k(k + n)
=

∞∑
n=1

∞∑
k=1

1

nk2(k + n)
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Thus,

S =
1

2

 ∞∑
n=1

∞∑
k=1

1

n2k(k + n)
+

∞∑
n=1

∞∑
k=1

1

nk2(k + n)



=
1

2

∞∑
n=1

∞∑
k=1

(
1

n2k(k + n)
+

1

nk2(k + n)

)

Factoring out a
1

nk(k + n)
gives:

S =
1

2

∞∑
n=1

∞∑
k=1

1

nk(k + n)

(
1

n
+

1

k

)

=
1

2

∞∑
n=1

∞∑
k=1

1

nk���
�(k + n)

(
���n+ k

nk

)

=
1

2

∞∑
n=1

∞∑
k=1

1

n2k2

=
1

2

∞∑
n=1

1

n2

∞∑
k=1

1

k2

=
1

2

∞∑
n=1

ζ(2)

n2

∴
∞∑
n=1

Hn

n3
=

(
ζ(2)

)2
2

=
π4

72
(6.11)
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6.3 Exercise Problems

1) Evaluate
∞∑
n=1

n

(2n+ 1)!
(Hint: Use the Taylor series of ex)

2) Find
∞∑
k=1

sin k◦

k
(Hint: Convert into radians and use Euler’s for-

mula)

3) Evaluate
∞∑
n=0

2n

(2n+ 1)
(
2n
n

)
(Hint: Use the identity

∫ π/2
0 sin2k+1 x dx = 22kk!2

(2k+1)!)

4) Find the value of
∞∑
n=1

(−1)nHn

n

5) Evaluate
k∑

n=0

(−1)n(
k
n

) for even k.
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7.1 Introduction

In this chapter, we will apply both the standard integration tech-
niques given in chapter 2 as well as the skills we developed with
series in the last three chapters. This will serve as our introduction
to advanced integrals, as most of these integrals are impossible or
very hard to solve using the standard techniques of u−substitution,
IBP, etc, alone. It will also allow us to have an easy transition to
the much more involved chapters dealing with special functions!

7.2 Some Problems

As always, we will begin with an easy problem.

Example 1: Evaluate
∫ ∞
0

lnx

1− x2
dx

Figure 7.1: Graph of y = lnx
1−x2
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Solution
Splitting the integral into two parts,

I =

∫ 1

0

lnx

1− x2
dx+

∫ ∞
1

lnx

1− x2
dx

Letting x =
1

u
, dx = − 1

u2
du in the underlined integral,

∫ ∞
1

lnx

1− x2
dx = −

∫ 0

1

ln
(

1
u

)
u2
(

1− 1
u2

)du

=

∫ 1

0

lnu

1− u2
du

Therefore,

I = 2

∫ 1

0

lnx

1− x2
dx

By the power series expansion of 1
1−x , we can write

I = 2

∫ 1

0

∞∑
n=0

x2n lnx dx

= 2
∞∑
n=0

∫ ∞
0

x2n lnx dx

Where we used the dominated convergence theorem in the last
step. By IBP with u = lnx, dv = x2ndx, we have

I =

∞∑
n=0

[x2n+1 lnx

2n+ 1

]1
0

− 1

2n+ 1

∫ 1

0
x2ndx


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= −
∞∑
n=0

1

(2n+ 1)2

This series can be easily evaluated. Consider

ζ(2) =

∞∑
n=1

1

n2

=

∞∑
n=1

1

(2n)2
+

∞∑
n=1

1

(2n− 1)2

=
1

4

∞∑
n=1

1

n2
+
∞∑
n=1

1

(2n− 1)2

∴
3

4
ζ(2) =

π2

8
=

∞∑
n=1

1

(2n− 1)2

We finally have

I = −2× π2

8

= −π
2

4

Example 2: Evaluate
∫ π

2

0
ln (cosx+ sinx)dx

Solution

Recall that

sin(x+ y) = sinx cos y + sin y cosx

Thus,
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Figure 7.2: Graph of y = ln (cosx+ sinx)

sin

(
x+

π

4

)
= cos

(
π

4

)
sinx+ sin

(
π

4

)
cosx

=

√
2

2
(sinx+ cosx)

=⇒ sinx+ cosx =
√

2 sin

(
x+

π

4

)

Hence,

I =

∫ π
2

0
ln

(
√

2 sin

(
x+

π

4

))
dx

Splitting the integral in half,
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I =

∫ π
4

0
ln

(
√

2 sin

(
x+

π

4

))
dx︸ ︷︷ ︸

(1)

+

∫ π
2

π
4

ln

(
√

2 sin

(
x+

π

4

))
dx︸ ︷︷ ︸

(2)

Applying our integral reflection identity to (1) and substituting
x→ x+ π

4 in (2) gives

I =

∫ π
4

0
ln

(
√

2 sin

(
π

2
− x
))

dx+

∫ π
4

0
ln

(
√

2 sin

(
x+

π

2

))
dx

Notice that sin
(
π
2 − x

)
= sin

(
x+ π

2

)
= cosx.

=⇒ I = 2

∫ π
4

0
ln
(√

2 cosx
)

dx

=
π ln 2

4
+ 2

∫ π
4

0
ln (cosx) dx

Now, define two integrals:

I1 =

∫ π
4

0
ln (cosx) dx

I2 =

∫ π
4

0
ln (sinx) dx

A creative strategy to crack our desired integral, I1, is to set up a
system of linear equations with I1 and I2 being the variables. We
will first add I1 and I2

I1 + I2 =

∫ π
4

0
ln (cosx sinx) dx
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=

∫ π
4

0
ln

(
1

2
sin 2x

)
dx

=

∫ π
4

0
ln (sin 2x) dx−

∫ π
4

0
ln 2 dx

Notice that both integrands above are symmetric around x = π
4 on

the interval
[
0, π2

]
. Thus,

I1 + I2 =
1

2

[∫ π
2

0
ln (sin 2x) dx−

∫ π
2

0
ln 2 dx

]

The bracketed expression has been evaluated previously (See (2.2)).
Therefore,

I1 + I2 = −π
2

ln 2

Moving on, we can compute the difference between I2 and I1,

I2 − I1 =

∫ π
4

0
ln (tanx) dx

Substituting u = tanx, dx = du
1+u2

then gives

I2 − I1 =

∫ 1

0

lnu

1 + u2
du

=

∫ 1

0

∞∑
n=0

(−1)nu2n lnu du

Where we applied the series expansion of 1
1+u2

in the last step. By
the dominated convergence theorem, we can switch the order of
summation and integration to obtain
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I2 − I1 =

∞∑
n=0

(−1)n
∫ 1

0
u2n lnu du

Using IBP,

I2 − I1 = −
∞∑
n=0

(−1)n

(2n+ 1)2

= −G

Where G is Catalan’s constant.

Definition

Catalan’s constant, often denoted as G, is named after the
French and Belgian mathematician Eugène Charles Cata-
lan. It was originally found in the field of combinatorics, but
later found use in analysis and even topologya. It is mainly
defined as the infinite series

G =
∞∑
n=0

(−1)n

(2n+ 1)2
(7.1)

a Agol, Ian (2010). The minimal volume orientable hyperbolic 2-
cusped 3-manifolds. Proceedings of the American Mathematical Soci-
ety, 138 (10): 3723–3732, arXiv:0804.0043, doi:10.1090/S0002-9939-10-
10364-5, MR 2661571.

Open Problem

It is not known whether Catalan’s constant is irrational, let
alone transcendentala. Proving the irrationality or transcen-
dentality of this constant would be a major result.

a Nesterenko, Yu. V. (January 2016). On Catalan’s constant. Pro-
ceedings of the Steklov Institute of Mathematics, 292 (1): 153–170,
doi:10.1134/s0081543816010107.
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To summarize,

I1 + I2 =
−π ln 2

2

I2 − I1 = −G

Therefore,

I1 =

∫ π
4

0
ln cosx dx =

1

2

(
G− π ln 2

2

)
(7.2)

I2 =

∫ π
4

0
ln sinx dx = −1

2

(
G+

π ln 2

2

)
(7.3)

We finally have

I =
π ln 2

4
+ 2I1

= G− π ln 2

4

Example 3: Define f(α) =

∫ α

0
lnx ln(α− x) dx. Find when the

minimum of f(α) occurs.

Solution

The substitution x = αu, dx = αdu transforms our integral into

f(α) = α

∫ 1

0
ln(αu) ln

(
α(1− u)

)
du

= α

∫ 1

0
[lnα+ ln(1− u)][lnα+ lnu] du

Expanding the integrand,

f(α) = α

∫ 1

0
ln2 α+ lnα lnu+ lnα ln(1− u) + ln(1− u) lnu du
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Figure 7.3: Graph of y = f(α)

= α

[∫ 1

0
ln2 α du+

∫ 1

0
lnα lnu du

+

∫ 1

0
lnα ln(1− u)du+

∫ 1

0
lnu ln(1− u) du

The first three integrals are trivial to evaluate. For the last integral,
consider the power series expansion of ln(1− u):

ln(1− u) = −
∞∑
n=1

un

n

∴ I =

∫ 1

0
lnu ln(1− u)du = −

∫ 1

0

∞∑
n=1

un lnu

n

By the dominated convergence theorem, we can interchange sum-
mation and integration to get:
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I = −
∞∑
n=1

1

n

∫ 1

0
un lnu du

=

∞∑
n=1

1

n(n+ 1)2

Notice that we can break up this sum into:

I = −
∞∑
n=1

[
1

n
− 1

n+ 1
− 1

(n+ 1)2

]

=

∞∑
n=1

(
1

n
− 1

n+ 1

)
︸ ︷︷ ︸

Telescoping

−
∞∑
n=1

1

(n+ 1)2

= 2− π2

6

We then have,

f(α) = α

[
ln2 α+ 2− 2 lnα− π2

6

]

Therefore,

f ′(α) = ln2 α− π2

6

f ′′(α) =
2 lnα

α

It is now easy to see that the minimum is at α = e
π√
6 . Utilizing our

expression for f(α) we can compute the minimum as:

f
(
e
π√
6

)
= e

π√
6

[
ln2
(
e
π√
6

)
+ 2− 2 ln

(
e
π√
6

)
− π2

6

]
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= e
π√
6

[
π2

6
+ 2− 2π√

6
− π2

6

]

= 2e
π√
6

(
1− π√

6

)
≈ −2.038

Example 4: Evaluate
∫ π

2

0
tanx ln sinx dx

Figure 7.4: Graph of y = tanx ln sinx

Solution

Consider rewriting the integral as:

I =

∫ π
2

0

sinx

cosx
ln sinxdx

=

∫ π
2

0

sinx

cosx
ln
(√

1− cos2 x
)

dx

Substituting u = cosx, du = − sinx dx gives
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I =
1

2

∫ 1

0

ln
(
1− u2

)
u

du

Now, using the power series expansion of ln(1− x), we can write

ln
(

1− u2
)

= −
∞∑
n=1

u2n

n

Therefore,

I = −1

2

∫ 1

0

∞∑
n=1

u2n−1

n
du

By the dominated convergence theorem, we can interchange sum-
mation and integration.

I = −1

2

∞∑
n=1

1

n

∫ 1

0
u2n−1du

= −1

2

∞∑
n=1

1

n

[
u2n

2n

]1
0

= −1

4

∞∑
n=1

1

n2

We can plug in
∑∞

n=1
1
n2 = π2

6 in the above expression,

∴
∫ π

2

0
tanx ln sinxdx = −π

2

24

For a proof of
∑∞

n=1
1
n2 = π2

6 , see (12.2).
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Example 5: Evaluate
∫ 1

0

lnx ln2(1− x)

x
dx

Figure 7.5: Graph of y = lnx ln2(1−x)
x

Solution

By (2.1) we can express our integral as

I =

∫ 1

0

ln(1− x) ln2 x

1− x
dx

We can then use the generating function for the harmonic numbers,
(6.9), to get

I = −
∫ 1

0

∞∑
n=1

Hnx
n ln2 x dx
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By the dominated convergence theorem, we can interchange sum-
mation and integration to obtain

I = −
∞∑
n=1

Hn

∫ 1

0
xn ln2 xdx

Now, consider the integral

f(α) =

∫ 1

0
xαdx =

1

α+ 1

For α > −1. Differentiating k times under the integral sign gives

∫ 1

0
xα lnk xdx =

(−1)kk!

(α+ 1)k+1

Then,

∫ 1

0
xn ln2 x dx =

(−1)2 · 2!

(n+ 1)3

And

I = −2
∞∑
n=1

Hn

(n+ 1)3

= −2

∞∑
n=1

1

(n+ 1)3

(
Hn+1 −

1

n+ 1

)

= 2

 ∞∑
n=1

1

(n+ 1)4
−
∞∑
n=1

Hn+1

(n+ 1)3


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= 2

 ∞∑
n=1

1

n4
−
∞∑
n=1

Hn

n3


∴ I = 2ζ(4)− 2

∞∑
n=1

Hn

n3

We can plug in our result for the latter sum from (6.11).

=⇒ I = 2ζ(4)− 2 · π4

72

Using ζ(4) = π4

90 (See proof in (12.3)) we have:

∫ 1

0

lnx ln2(1− x)

x
dx = − π4

180

7.3 Exercise Problems

1) Evaluate
∫ 1

0
lnx ln(1− x) dx

2) Find the value of
∫ ∞
0

sin2n+1 x

x
dx for n ∈ N.

3) Evaluate
∫ 1

0
ln

(
1 + x

1− x

)
dx

x
√

1− x2

4) Find
∫ π/4

0
ln tanx dx
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5) Evaluate
∫ ∞
0

ln2 tanhx dx

6) Find the value of
∫ 1

0

x ln2 x

1− x4
dx

7) Evaluate lim
n→∞

∫ 1

0

xn − x2n

1− x
dx

8)

Challenge Problem

Evaluate ∫ 1

−1
arctanx arcsinx dx

Hint: Use

arctanx =

∫ 1

0

x

1 + x2y2
dy
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8.1 Introduction

In this chapter, we will be dealing with integrals that contain the
fractional part function.

Definition

The fractional part function, usually denoted as {·} is de-
fined as follows:

{x} = x− bxc x ≥ 0 (8.1)

Where b·c denotes the floor function (See below for defini-
tion). For example, {1.5} = .5. The fractional part function
is defined for negative x, but the definitions vary.

Definition

The floor function, usually denoted as b·c, is defined as the
greatest integer less than or equal to x. Similarly, the ceiling
function, usually denoted dxe, is defined as the least integer
greater than or equal to x. Equivalently,

bxc = max{n ∈ Z | n ≤ x} (8.2)

dxe = min{n ∈ Z | n ≥ x} (8.3)

The results that these integrals give rise to are mind-blowing! The
essence in solving problems like the ones in this chapter is convert-
ing them to infinite sums of consecutive integrals which we can
manage. Although these integrals are not a primary area of re-
search, they have a chapter dedicated to them since they develop
the skill of using series to evaluate integrals.
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8.2 Some Problems

We begin with the most basic of fractional part integrals:

Example 1: Evaluate
∫ n

0
{x} dx for n ∈ N.

First, we will take a look at the graph of y = {x}.

Figure 8.1: Case when n = 10

Notice that each line is simply y = x shifted along the x axis. This
is rather obvious from the definition of the fractional part function.
Consider some x ∈ [k, k + 1), it is easy to see that

{x} = x− bxc = x− k

Therefore, the integral in our example is equivalent to a sum of in-
tegrals with intervals [k, k+ 1) from k = 0 to k = n− 1. Translating
these words into math we have

I =

∫ n

0
{x} dx =

n−1∑
k=0

∫ k+1

k
(x− k) dx
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=
1

2

n−1∑
k=0

1 =
n

2

Notice the strategy in solving these integrals. Since the fractional
part, floor, and ceiling functions are piece-wise functions, we can
think about their definite integrals (or the area under their curves)
as a sum of consecutive areas. In other words, the principal aim
when cracking these fractional part integrals is to transform them
to sums of integrals without fractional parts.

Now that we know how to approach such types of integrals, let us
delve a little deeper.

Example 2: Evaluate
∫ n

0
{x}bxcdx for n ∈ N.

Figure 8.2: Try to decipher the pattern from this graph to solve the
integral.

Recall the definition of the fractional part:
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{x} = x− bxc

From the previous example, we know that for some x ∈ [k, k + 1),
{x} = x − k. We also know that on that same interval, bxc = k.
Therefore,

I =

∫ n

0
{x}bxcdx =

∫ 1

0
(x− 0)(0) dx+

∫ 2

1
(x− 1)(1) dx+ · · ·

=

n−1∑
k=0

∫ k+1

k
k(x− k) dx

=
n−1∑
k=0

[
kx2

2
− k2x

]k+1

k

=
n−1∑
k=0

k

2

=
1

2

n−1∑
k=0

k =
n(n− 1)

4

Example 3: Evaluate
∫ ∞
0

{x}bxc

dxe
dx

Solution

As always, we will break this integral into a sum of integrals. How-
ever, now we are dealing with an infinite sum!

I =
∞∑
n=0

∫ n+1

n

{x}bxc

dxe
dx
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Figure 8.3: Graph of y = {x}bxc
dxe

=

∞∑
n=0

∫ n+1

n

{x}n

n+ 1
dx

=
∞∑
n=0

∫ n+1

n

(x− n)n

n+ 1
dx

Notice that we can substitute x− n→ x to get:

I =
∞∑
n=0

∫ 1

0

xn

n+ 1
dx

=
∞∑
n=0

1

(n+ 1)2

∴ I =

∞∑
n=1

1

n2
= ζ(2) =

π2

6
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Example 4: Evaluate
∫ 1

0

{
1

x

}
dx

Figure 8.4: Graph of y =
{

1
x

}

This integral is part of a well-known and beautiful result in mathe-
matics1. We begin solving this integral by substituting u = 1

x , dx =

−du
u2
. We then have

I =

∫ 1

0

{
1

x

}
dx

=

∫ ∞
1

{u}
u2

du

Notice that we can break down the integral above into a consecu-

1Havil, J. Gamma: Exploring Euler’s Constant. Princeton, NJ: Princeton
University Press, pp. 109-111, 2003.
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tive sum of integrals.

I =

∞∑
n=1

∫ n+1

n

u− n
u2

du

=
∞∑
n=1

(∫ n+1

n

du

u
− n

∫ n+1

n

du

u2

)

Which evaluates to

I =
∞∑
k=1

(
ln

(
n+ 1

n

)
− 1

n+ 1

)

Recall the definition of the Euler-Mascheroni constant (See (1.8)):

γ = lim
k→∞

(Hk − ln k)

We can replace ln k by ln(k + 1) since limk→∞ ln(k + 1) − ln k = 0.
Thus,

γ = lim
k→∞

(
Hk − ln(k + 1)

)
Notice that ln(k + 1) can be represented by a telescoping sum:

ln(k + 1) =
k∑

n=1

ln(n+ 1)− lnn =

k∑
n=1

ln

(
n+ 1

n

)
Plugging the sum above into the expression for γ then gives

γ = lim
k→∞

 k∑
n=1

1

n
−

k∑
n=1

ln

(
n+ 1

n

)
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= lim
k→∞

k∑
n=1

(
1

n
− ln

(
n+ 1

n

))

This well-known result is due to Euler. The expression we obtained
for I is then:

I =

∞∑
k=1

(
ln

(
n+ 1

n

)
− 1

n+ 1

)
= 1− γ (8.4)

Example 5: Evaluate
∫ 1

0

{
1
3
√
x

}
dx

Figure 8.5: Graph y =

{
1

3
√
x

}
We can generalize this for any root. Define
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Ik =

∫ 1

0

{
1
k
√
x

}
dx

Where k > 1. Substituting x =
1

tk
, dx = − k

tk+1 du gives

Ik = k

∫ ∞
1

{t}
tk+1

dt

As usual, we will break this integral up into a sum of consecutive
integrals

Ik = k
∞∑
n=1

∫ n+1

n

t− n
tk+1

dt

Evaluating the integral and simplifying a bit,

Ik = k

 1

1− k

∞∑
n=1

(
1

(n+ 1)k−1
− 1

nk−1

)

+
1

k

∞∑
n=1

n

(
1

(n+ 1)k
− 1

nk

)
Notice that the first sum is telescoping:

∞∑
n=1

(
1

(n+ 1)k−1
− 1

nk−1

)
=

(
�
�
�1

2k−1
− 1

1k−1

)
+(

�
�
�1

3k−1
−
�
�
�1

2k−1

)
+

(
1

4k−1
−
�
�
�1

3k−1

)
+ · · ·

= lim
n→∞

(
− 1

1k−1
+

1

nk−1

)
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= −1

Therefore,

Ik =
k

k − 1
+
∞∑
n=1

n

(
1

(n+ 1)k
− 1

nk

)
Notice that the sum above is

S =
∞∑
n=1

n

(
1

(n+ 1)k
− 1

nk

)
= 1

(
1

2k
− 1

1k

)
+ 2

(
1

3k
− 1

2k

)
+ 3

(
1

4k
− 1

3k

)
+ · · ·

We can regroup the terms in the sum without changing its value
(Since it is absolutely convergent for k > 1):

S =

(
− 1

1k

)
+

(
1

2k
− 2 · 1

2k

)
+

(
2 · 1

3k
− 3 · 1

3k

)
+ · · ·

Each n−1
nk

gets n
nk

subtracted from it. We therefore have:

S = −
(

1

1k
+

1

2k
+

1

3k
+ · · ·

)
= −ζ(k)

Plugging S back in we get∫ 1

0

{
1
k
√
x

}
dx =

k

k − 1
− ζ(k) (8.5)

To evaluate our integral, we simply substitute k = 3 to obtain:∫ 1

0

{
1
3
√
x

}
dx =

3

2
− ζ(3)
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Example 6: Evaluate
∫ ∞
1

{x}
xn

dx for n > 2.

Figure 8.6: Graph of y = {x}
x3

We begin by substituting {x} = x− bxc.

=⇒ I =

∫ ∞
1

x− bxc
xn

dx

=

∫ ∞
1

dx

xn−1
−
∫ ∞
1

bxc
xn

dx

The first integral is trivial to evaluate. Notice that we can rewrite
the second integral as an infinite sum of consecutive integrals

I =
1

n− 2
−
∞∑
k=1

∫ k+1

k

k

xn
dx

We have already evaluated a similar integral in (8.5). Therefore,
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I =

∫ ∞
1

{x}
xn

dx =
1

n− 2
− ζ(n− 1)

n− 1
(8.6)

Example 7: Evaluate
∫ 1

0

{
1

k k
√
x

}
dx for k > 1.

Figure 8.7: Graph of y =
{

1
2
√
x

}
We begin by substituting u = k k

√
x, dx =

uk−1

kk−1
du,

I =

∫ 1

0

{
1

k k
√
x

}
dx =

1

kk−1

∫ k

0

{
1

u

}
uk−1du

Substituting y =
1

u
, du = −dy

y2
,

I =
1

kk−1

∫ ∞
1
k

{y}
yk+1

dy
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Recall the integral we dealt with in (8.5),

Ik =

∫ 1

0

{
1
k
√
x

}
dx

Which transforms into

Ik = k

∫ ∞
1

{t}
tk+1

dt =
k

k − 1
− ζ(k)

Through the substitution x = 1
tk
. We can then use our result from

that example to obtain:

I =
1

kk−1

∫ ∞
1
k

{y}
yk+1

dy

=
1

kk−1


∫ 1

1
k

{y}
yk+1

dy +

∫ ∞
1

{y}
yk+1

dy︸ ︷︷ ︸
Ik/k


=

1

kk−1

[∫ 1

1
k

{y}
yk+1

dy +
1

k − 1
− ζ(k)

k

]

Notice that for y ∈
[
1
k , 1
)
, {y} = y. Therefore,

I =
1

kk−1

[∫ 1

1
k

dy

yk
+

1

k − 1
− ζ(k)

k

]

=
1

kk−1

[
kk−1 − 1

k − 1
+

1

k − 1
− ζ(k)

k

]

=
1

kk−1

[
kk−1

k − 1
− ζ(k)

k

]
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Which finally evaluates to

I =

∫ 1

0

{
1

k k
√
x

}
dx =

1

k − 1
− ζ(k)

kk

Example 8: Evaluate
∫ 1

0

{2x}
x

{
1

x

}
dx

Figure 8.8: Graph of y = {2x}
x

{
1

x

}

Notice that when x ∈
[
0, 12

)
, {2x} = 2x and when x ∈

[
1
2 , 1
)
,

{2x} = 2x − 1. Thus, we can split our desired integral into two
separate integrals:

I =

∫ 1

0

{
1

x

}
{2x}dx

x

=

∫ 1
2

0
(2x)

{
1

x

}
dx

x
+

∫ 1

1
2

(2x− 1)

{
1

x

}
dx

x
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= 2

∫ 1
2

0

{
1

x

}
dx+ 2

∫ 1

1
2

{
1

x

}
dx−

∫ 1

1
2

{
1

x

}
dx

x

We can combine the first two integrals to get:

I = 2

∫ 1

0

{
1

x

}
dx−

∫ 1

1
2

{
1

x

}
dx

x

We have already evaluated the first integral in (8.4). In regards to
the second integral, notice that when x ∈

(
1
2 , 1
]
,
{

1
x

}
= 1

x − 1 by
the definition of the fractional part function. Thus,

∫ 1

1
2

{
1

x

}
dx

x
=

∫ 1

1
2

(
1
x − 1

)
x

dx

=

∫ 1

1
2

dx

x2
−
∫ 1

1
2

dx

x

= 1− ln 2

Thus,

I = 2 (1− γ)− (1− ln 2)

= 1 + ln 2− 2γ

Example 9: Evaluate
∫ ∞
1

{x} − 1
2

x
dx
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Figure 8.9: Graph of y =
{x}− 1

2
x

By the definition of the fractional part function,

I =

∫ ∞
1

x− bxc − 1
2

x
dx

We can transform this integral into a sum of integrals with intervals
[k, k + 1] so we can get rid of the floor function

I =

∞∑
k=1

∫ k+1

k

x− bxc − 1
2

x
dx

=
∞∑
k=1

∫ k+1

k

x− k − 1
2

x
dx

In evaluating the integral above we obtain
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I =
∞∑
k=1

[(
k +

1

2

)
ln k −

(
k +

1

2

)
ln(k + 1) + 1

]

Notice that we can add ln k − ln k to get:

I =
∞∑
k=1

[(
k + 1− 1 +

1

2

)
ln k −

(
k +

1

2

)
ln(k + 1) + 1

]

= lim
N→∞

N∑
k=1

[
1 + ln k +

(
k − 1 +

1

2

)
ln k −

(
k +

1

2

)
ln(k + 1)

]
(8.7)

We can split (8.7) into two the limit of two summations:

I = lim
N→∞

 N∑
k=1

(1 + ln k)

+
N∑
k=1

((
k − 1 +

1

2

)
ln k −

(
k +

1

2

)
ln(k + 1)

)
︸ ︷︷ ︸

Telescoping Sum



= lim
N→∞

(
N + lnN !−

(
N +

1

2

)
ln(N + 1)

)

This looks like an opportunity to use Stirling’s formula (See (1.6)).
However, we first need to convert our expression into one loga-
rithm.

I = lim
N→∞

(
ln
(
eN
)

+ lnN !− ln
(

(N + 1)N+ 1
2

))
= lim

N→∞
ln

(
N ! eN

(N + 1)N+ 1
2

)
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Since N →∞, we can use (1.6) to get

I = lim
N→∞

ln

eN
(
N
e

)N √
2πN

(N + 1)N+ 1
2



= lim
N→∞

ln

(
NN+ 1

2

√
2π

(N + 1)N+ 1
2

)

= lim
N→∞

ln


√

2π(
1 + 1

N

)N+ 1
2


By the definition of e,

e = lim
x→∞

(
1 +

1

x

)x
We have

I = lim
N→∞

ln

(√
2π

e

)

= ln

(√
2π

e

)
We finally obtain that:∫ ∞

1

{x} − 1
2

x
dx = ln

(√
2π
)
− 1

Example 10: Evaluate
∫ 1

0

{
1

x

}
x lnx dx
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Figure 8.10: Graph of y =
{

1
x

}
x lnx

Solution

Define a function

f(α) =

∫ 1

0

{
1

x

}
xα−1dx

Differentiating under the integral,

f ′(α) =

∫ 1

0

{
1

x

}
xα−1 lnx dx

Our desired integral is then f ′ (2). Let us first evaluate f(α). Con-
sider the substitution u = 1

x ,

=⇒ f(α) =

∫ ∞
0

{x}
xα+1

dx
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We have already evaluated this integral (See (8.6)). Therefore,

f(α) =
1

α− 1
− ζ(α)

α

And,

f ′(α) = − 1

(α− 1)2
− αζ ′(α)− ζ(α)

α2

=
ζ(α)

α2
− 1

(α− 1)2
− ζ ′(α)

α

Plugging in α = 2 gives

f (2) =
ζ (2)

4
− 1− ζ ′ (2)

2

The value of ζ ′(2) is:

ζ ′(2) = −
∞∑
k=1

ln k

k2
= −π

2

6

(
12 lnA− γ − ln(2π)

)
(8.8)

Where A denotes the Glaisher-Kinkelin constant.
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Definition

The Glaisher-Kinkelin constant, usually denoted as A, is a
constant that appears in many sums and integrals. It is be
given by:

A = lim
n→∞

K(n+ 1)

e−n2/4nn2/2+n/2+1/12
≈ 1.282 (8.9)

Where K(·) denotes the K-function:

K(n) =
n−1∏
k=1

kk

(8.8) can be easily shown through Glaisher’s 1894 result:2

∞∏
k=1

k
1
k2 =

(
A12

2πeγ

)π2

6

(8.10)

Thus,

f(2) =
π2

24
− 1− π2

12

(
12 lnA− γ − ln(2π)

)

2Glaisher, J. W. L. On the Constant which Occurs in the Formula for
11.22.33 . . . nn. Messenger Math. 24, 1-16, 1894.
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8.3 Open Problems

Open Problem

Let n ≥ 3 be an integer. Calculate∫
[0,1]n

{
x1
x2

}{
x2
x3

}
· · ·
{
xn
x1

}
dx1 · · · dxn

Where ∫
[0,1]n

≡
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n times

Open Problem

Let n ≥ 3, k ≥ 1 be integers. Calculate∫
[0,1]n

{
1

x1 + x2 + · · ·+ xn

}k
dx1 · · · dxn

Where the open problems are due to Ovidiu Furdui’s book "Limits,
Series, and Fractional Part Integrals: Problems in Mathematical
Analysis"3. It is worth mentioning that many of the fractional part
integrals outlined in this chapter can be found in Furdui’s book,
along with solutions.

8.4 Exercise Problems

1) Evaluate
∫ n

0
{x2} dx for n ∈ N.

3Furdui, O. (2013). Limits, Series, and Fractional Part Integrals: Problems
in Mathematical Analysis. New York, NY: Springer.
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2) Calculate
∫ 1

0

∫ 1

0

{
x+ y

x− y

}
dx dy

3) Find a closed form for
∫ 1

0

∫ 1

0
(xy)2019

{
x

y

}{
y

x

}
dxdy

4) Evaluate
∫ 1

0
x

⌊
1

x

⌋{
1

x

}
dx

5)

Challenge Problem

Evaluate

∫ 1

0

√√√√√
{

1
x

}
1−

{
1
x

} dx

1− x

Hint: Use the integral definition of the gamma function.
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In this part, we will use our tools from the previous chapters to de-
rive properties and representations of many special functions. After
doing so, we will work through a collection of example problems
with the aid of our new powerful tools.

This part will involve extensive use of the gamma, polygamma,
beta, and Riemann zeta functions. Our aim is to explore their util-
ity in series and integral problems as well as to establish a sense of
familiarity with their properties and uses. These tools will then be
used in our final and culminating part of the book regarding appli-
cations in the mathematical sciences.
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9.1 Definition

We have already introduced this function back in chapter 1 (See
(1.7)). This special function is a very powerful tool in evaluating
many integrals and series, and is perhaps one of the most applica-
ble special functions in both mathematics and the mathematical
sciences.

Figure 9.1: Graph of y = Γ(x)

9.2 Special Values
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Figure 9.2: Graph of the log-gamma function, y = ln Γ(x), which
arises in various problems in mathematical analysis

Γ (1) = 0! = 1

Γ

(
1

2

)
=
√
π

Γ

(
−1

2

)
= −2

√
π

Γ

(
1

3

)
≈ 2.678 938 534 707 747 6337

Γ

(
1

4

)
≈ 3.625 609 908 221 908 3119
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9.3 Properties and Representations

In the properties and representations section, we will derive several
identities and equations relating to the special function considered
in the chapter. Let us get started with our first!

Theorem

An interesting equation due to Gauss:

Γ(z) = lim
n→∞

nz

z

n∏
k=1

k

z + k
(9.1)

Proof. Denote

In =

∫ n

0
tz−1

(
1− t

n

)n
dt

Applying IBP with u =
(
1− t

n

)n
, dv = tz−1dt gives

In =

[
tz

z

(
1− t

n

)n]n
0︸ ︷︷ ︸

=0

+
n

nz

∫ n

0
tz
(

1− t

n

)n−1
dt

=
n

nz

∫ n

0
tz
(

1− t

n

)n−1
dt

Applying IBP successively with u =
(
1− t

n

)n−k
, dv = tz+k−1dt for

k = 1, 2, 3 · · · , n− 1 gives the formula

In =
n

nz
· n− 1

n(z + 1)
· · · 1

n(z + n− 1)

∫ n

0
tz+n−1dt

=
n

nz
· n− 1

n(z + 1)
· · · 1

n(z + n− 1)
· n

n+z

n+ z
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Note that there are n multiples of n in the denominator. We can
easily express the above expression as a finite product:

In =
nz

z

n∏
k=1

k

z + k

Since

lim
n→∞

In = lim
n→∞

∫ n

0
tz−1

(
1− t

n

)n
dt

And

e−t = lim
n→∞

(
1− t

n

)n
We can write:

lim
n→∞

In =

∫ ∞
0

tz−1e−tdt = Γ(z)

Where the interchange of the limit and integral is justified by the
dominated convergence theorem. Thus,

Γ(z) = lim
n→∞

nz

z

n∏
k=1

k

z + k
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Theorem

Another infinite product expression for the gamma function
is given by Weierstrass:

Γ(z) =
e−γz

z

∞∏
k=1

(
1 +

z

k

)−1
ez/k (9.2)

Proof. Consider the result from (9.1):

Γ(z) = lim
n→∞

nz

z

n∏
k=1

k

z + k

We can rewrite this as

Γ(z) = lim
n→∞

1

z
exp

(
zHn − zHn + z ln(n)

) n∏
k=1

k

z + k

Since
lim
n→∞

− lnn+Hn = γ

We can express our product as

Γ(z) = lim
n→∞

1

z
exp (zHn − zγ)

n∏
k=1

k

z + k

= lim
n→∞

1

z
exp (zHn − zγ)

n∏
k=1

1

1 + z
k

= lim
n→∞

e−γz

z
exp (zHn)

n∏
k=1

1

1 + z
k
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Notice that

exp (zHn) = exp

z n∑
k=1

1

k


= e

z
1 · e

z
2 · · · e

z
n

=

n∏
k=1

e
z
k

Thus,

Γ(z) = lim
n→∞

e−γz

z

n∏
k=1

e
z
k

n∏
k=1

1

1 + z
k

= lim
n→∞

e−γz

z

n∏
k=1

e
z
k

1 + z
k

Taking the limit as n→∞,

Γ(z) =
e−γz

z

∞∏
k=1

(
1 +

z

k

)−1
ez/k

Theorem

The infamous Euler’s reflection formula is given by

Γ(z)Γ(1− z) = π cscπz (9.3)

This equation has been used multiple times throughout the
book, so why not prove it!
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Proof. Consider equation (9.1):

Γ(z) = lim
n→∞

nz

z

n∏
k=1

k

z + k
(9.4)

The substitution z → −z gives

Γ(−z) = lim
n→∞

1

z · nz
n∏
k=1

k

z − k
(9.5)

We can then multiply (9.4) and (9.5) to get

Γ(z)Γ(−z) = lim
n→∞

1

z2

n∏
k=1

k2

z2 − k2

= lim
n→∞

1

z2

n∏
k=1

1
z2

k2
− 1

(9.6)

Lemma. We can express sinπx as

sinπx = πx

∞∏
k=1

(
1− x2

k2

)
(9.7)

Proof. (9.7) was used by Euler to prove the famous result that

ζ(2) =

∞∑
n=1

1

n2
=
π2

6

The problem of evaluating the above sum is widely known as the
Basel problem. The problem was originally posed by Pietro Mengoli
in 1650, and gained notoriety after many famous mathematicians
failed to attack it, notably the Bernoulli family1. In this proof, we

1Ayoub, Raymond (1974). Euler and the zeta function. Amer. Math.
Monthly. 81: 1067–86. doi:10.2307/2319041.
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will present the heuristic approach Euler took, which was only jus-
tified 100 years later by Weierstrass.

In his infamous solution of the Basel problem, Euler argued heuris-
tically that one can express sinx

x as a polynomial of infinite degree
based on its roots, similar to how one can factorize a finite polyno-
mial. In doing so, Euler gave

sinx

x
= (x+ π)(x− π)(x+ 2π)(x− 2π) · · ·

= (x2 − π2)(x2 − 4π2)(x2 − 9π2) · · ·

= A

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·

Where A is a constant. Since

lim
x→0

sinx

x
= 1

It is easy to see that A = 1. This approach was shown to be valid
much later by Weierstrass through the Weierstrass factorization
theorem.

Theorem

The Weierstrass factorization theorem asserts that every
complex-valued function that is differentiable at all finite
points over the whole complex plane can be represented as
a product involving its zeroes. It can be seen as an extension
of the fundamental theorem of algebra to complex functions.

Continuing our proof,
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sinx

x
=

∞∏
k=1

(
1− x2

(kπ)2

)
(9.8)

Substituting x→ πx gives

sinπx

πx
=
∞∏
k=1

(
1− x2

k2

)

∴ sinπx = πx
∞∏
k=1

(
1− x2

k2

)

Now, back to our original proof. Notice that we can write (9.6) as

Γ(z)Γ(−z) = lim
n→∞

1

z2

n∏
k=1

(
z2

k2
− 1

)−1

= − 1

z2
πz

sinπz

= − π

z sinπz

Thus,

Γ(z)(−zΓ(−z)) =
π

sinπz

=⇒ Γ(z)Γ(1− z) = π cscπz
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9.4 Some Problems

Let us begin with a very common integral.

Example 1: Evaluate
∫ ∞
0

e−x
n
dx for n > 0.

Figure 9.3: The graph of the very famous y = e−x
2 (Gaussian inte-

gral)

We can substitute u = xn, dx = u
1−n
n

n du to get

I =
1

n

∫ ∞
0

e−uu
1
n
−1du

Using the integral definition of the Gamma function gives

I =
1

n
Γ

(
1

n

)
Since xΓ(x) = Γ(x+ 1) we have
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I = Γ

(
n+ 1

n

)
(9.9)

Sure does seem like these special functions make a lot of things eas-
ier! Let us transition into another well-known integral.

Example 2: Evaluate
∫ α+1

α
ln Γ(x) dx

Solution

Define a function

f(α) =

∫ α+1

α
ln Γ(x) dx

Taking the derivative,

f ′(α) = ln Γ(α+ 1)− ln Γ(α)

= ln

(
Γ(α+ 1)

Γ(α)

)

f ′(α) = lnα

Where in the last step we used the definition of the gamma func-
tion. Thus,

f(α) =

∫
lnα dα

= α lnα− α+ C
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The case when α = 0 was evaluated back in chapter 2 (See (2.4)).
This gives us the initial condition required to find the value of C.

=⇒ C = ln
(√

2π
)

∫ α+1

α
ln Γ(x) dx = α lnα− α+ ln

(√
2π
)

(9.10)

This formula is named after the Swiss mathematician Joseph Lud-
wig Raabe (Raabe’s formula), who derived it in 18402.

Example 3: Evaluate
∫ 1

0
Γ

(
1 +

x

2

)
Γ

(
1− x

2

)
dx

Figure 9.4: Graph of y = Γ
(
1 + x

2

)
Γ
(
1− x

2

)
Solution

By definition, xΓ(x) = Γ(x+ 1),
2J. L. Raabe, Angenäherte Bestimmung der Factorenfolge 1 ·2 ·3 ·4 ·5 . . . n =

Γ(1+n) =
∫
xne−xdx, wenn n eine sehr grosse Zahl ist, J. Reine Angew. Math.

25 (1840), 146-159.
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I =
1

2

∫ 1

0
xΓ

(
x

2

)
Γ

(
1− x

2

)
dx

We can now apply Euler’s reflection formula

Γ(z)Γ(1− z) =
π

sin (πz)

To get

I =
1

2

∫ 1

0

πx

sin
(
πx
2

)dx

Substituting u = πx
2 ,

I =
2

π

∫ π
2

0

u

sinu
du

Now, consider the double angle formula for sinx:

sin 2x = 2 sinx cosx

Then,

sinx = 2 sin

(
x

2

)
cos

(
x

2

)

And

I =

∫ π
2

0

x

sinx
dx =

∫ π
2

0

x

2 sin
(
x
2

)
cos
(
x
2

)dx

=

∫ π
2

0

x

2 tan
(
x
2

)
cos2

(
x
2

)dx
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Substituting x = 2 arctanu, dx = 2
1+u2

du,

I =

∫ 1

0

2 arctanu

u
du

Using the power series of arctanu,

I = 2

∫ 1

0

∞∑
n=0

(−1)n

2n+ 1
u2ndu

By the dominated convergence theorem we can interchange the
summation and integration and integrate to obtain

I = 2

∞∑
n=0

(−1)n

(2n+ 1)2

Which is equal to 2G by definition (See (7.1)).

∴ I =
4G

π

9.5 Exercise Problems

1. Prove that xΓ(x) = Γ(x + 1) using the integral definition of the
gamma function.

2. Find
∫ 1

0
cos2(πx) ln Γ(x) dx

3. Show that Γ(n) =

∫ 1

0

(
ln

(
1

x

))n−1
dx
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4. Evaluate
∫ ∞
0

x5(e3x − ex)

(ex − 1)4
dx

5. Find
∫ ∞
0

x3e−2x sinx dx (Hint: Use differentiation under the

integral sign).

6.

Challenge Problem

Evaluate ∫ 1

0

(
ln Γ(x)

)2
dx

Hint: Use the Fourier series of ln
(
Γ(x)

)
,

ln Γ(x)− ln
√

2π

=

 1

π

∞∑
n=2

lnn sin(2πnx)

n

+
(γ + ln 2π)(1− 2x)

2

− 1

2
ln|2 sin(πx)|
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10.1 Definition

Definition

The polygamma function of order n, usually denoted as
ψ(n)(·), is defined as the (n + 1)th derivative of the natural
logarithm of the gamma function:

ψ(n)(z) =
dn+1

dzn+1
ln Γ(z) (10.1)

Note: The digamma function, ψ(0)(·), is often expressed as
ψ(·).

Figure 10.1: Graph of y = ψ(x)
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Figure 10.2: Graph of the trigamma function, y = ψ(1)(x)

10.2 Special Values

ψ(1) = −γ

ψ

(
1

2

)
= −2 ln 2− γ

ψ

(
1

3

)
= − π

2
√

3
− 3 ln 3

2
− γ

ψ

(
1

4

)
= −π

2
− 3 ln 2− γ

ψ(1)(1) =
π2

6

ψ(1)

(
1

2

)
=
π2

2
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10.3 Properties and Representations

The first value of the digamma function in the above section follows
from (10.4), which can also be used to compute ψ(n) for any n ∈
N. The fractional values can be computed by Gauss’s digamma
theorem.

Theorem

Let n, k be positive integers with k > n. Then the following
finite representation of the digamma function holdsa:

ψ

(
n

k

)
= −γ − ln(2k)− π

2
cot

(
nπ

k

)

+ 2

d k2e−1∑
j=1

cos

(
2πjn

k

)
ln sin

(
πj

k

)
(10.2)

Which follows from the digamma function’s recurrence equa-
tion. Notice that if n > k, then the recurrence relation in
(10.8) can be used.

aKnuth, D. E. The Art of Computer Programming, Vol. 1: Funda-
mental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1997.

We will now attempt to express the polygamma function as an infi-
nite series.

Theorem

The polygamma function can be written as:

ψ(k)(z) = (−1)k+1k!

∞∑
n=0

1

(n+ z)k+1
(10.3)
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Proof. Recall the Weierstrass definition of the gamma function in
(1.7):

Γ(z) =
e−γz

z

∞∏
k=1

(
1 +

z

k

)−1
ez/k

Taking the natural logarithm of both sides gives us

ln Γ(z) = (−γz − ln z) + ln

 ∞∏
k=1

(
1 +

z

k

)−1
ez/k


Since ln

(∏
an
)

=
∑

ln an, we have

ln Γ(z) = −γz − ln z +
∞∑
k=1

(
z

k
− ln

(
1 +

z

k

))

Term by term differentiation is valid here since the series on the
RHS converges absolutely. Thus,

ψ(z) = −γ − 1

z
+

∞∑
k=1

(
1

k
− 1

z + k

)

Notice that the series above telescopes to Hz. Therefore,

ψ(z + 1) = −γ +Hz (10.4)

We can also write (10.4) as an infinite series using (6.8),

ψ(z + 1) = −γ +
∞∑
n=1

z

n(n+ z)
(10.5)
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We proceed to differentiate both sides of (10.5) to obtain

ψ(1)(z + 1) =
∞∑
n=1

1

(n+ z)2

Substituting z + 1→ z and re-indexing,

ψ(1)(z) =
∞∑
n=0

1

(n+ z)2

Differentiating again,

ψ(2)(z) = −2
∞∑
n=0

1

(n+ z)3

In general,

ψ(k)(z) = (−1)k+1k!
∞∑
n=0

1

(n+ z)k+1

Which is found by differentiating (10.5) k times.

10.4 Some Problems

Example 1: Evaluate
∫ 1

0

1− x
1− x3

ln4 x dx

Solution

Define a function,
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Figure 10.3: Graph of y = 1−x
1−x3 ln4 x

f(α) =

∫ 1

0

1− x
1− x3

xαdx

By the series representation of 1
1−x , we have:

1

1− x3
=
∞∑
n=0

x3n

And,

f(α) =

∫ 1

0

∞∑
n=0

xα(1− x)x3ndx

We can then interchange summation and integration by the domi-
nated convergence theorem
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f(α) =

∞∑
n=0

∫ 1

0
xα(1− x)x3ndx

=
∞∑
n=0

∫ 1

0
xα+3n − xα+3n+1dx

=
∞∑
n=0

(
1

α+ 3n+ 1
− 1

α+ 3n+ 2

)
(10.6)

Differentiating f(α) under the integral sign four times gives

f (4)(α) =

∫ 1

0

1− x
1− x3

xα ln4 x dx

Our integral is simply f (4)(0). We can differentiate term-wise in
(10.6) since the series is absolutely convergent. Differentiating (10.6)
four times and then letting α = 0 gives

I = 4!
∞∑
n=0

(
1

(3n+ 1)5
− 1

(3n+ 2)5

)

=
4!

35

∞∑
n=0

 1(
n+ 1

3

)5 − 1(
n+ 2

3

)5


By (10.3) we can write

I =
4!

35

−ψ(4)
(
1
3

)
4!

−
−ψ(4)

(
2
3

)
4!





10.4. SOME PROBLEMS 285

=
ψ(4)

(
2
3

)
− ψ(4)

(
1
3

)
35

Using the Mathematica call for the polygamma function, we can
compute

I =
32π5

243
√

3

Example 2: Evaluate
∫ 1

0
Hx dx

Figure 10.4: Graph of y = Hx

Solution

Note that we can use our result in (10.4) to get

Hx = ψ(x+ 1) + γ
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Therefore,

I =

∫ 1

0
Hx dx =

∫ 1

0
ψ(x+ 1) + γ dx

= γ +

∫ 1

0
ψ(x+ 1) dx

By the definition of the digamma function, we have

I = γ +
[
ln Γ(x+ 1)

]1
0

∴
∫ 1

0
Hx dx = γ (10.7)

Example 3: Evaluate
∫ 1

0

lnx

x2 + x+ 1
dx

Figure 10.5: Graph of y = lnx
x2+x+1
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Solution

Recall that

1− x3 = (x2 + x+ 1)(1− x)

Hence,

I =

∫ 1

0

(1− x) lnx

1− x3
dx

Splitting the integral,

I =

∫ 1

0

lnx

1− x3
dx−

∫ 1

0

x lnx

1− x3
dx

Substituting the power series of
1

1− x3
and interchanging summa-

tion and integration using the dominated convergence theorem then
gives

∞∑
n=0

[∫ 1

0
x3n lnx dx

]
−
∞∑
n=0

[∫ 1

0
x3n+1 lnx dx

]

As a standard integral, we may use:

∫ 1

0
xα lnx dx = − 1

(α+ 1)2

Which can be easily shown by IBP. Thus,

I =

∞∑
n=0

1

(3n+ 2)2
−
∞∑
n=0

1

(3n+ 1)2



288 CHAPTER 10. POLYGAMMA FUNCTIONS

Notice that the underlined sum takes the sum of squares of the
form (3n+2)2, and leaves out those of the form (3n)2 and (3n+1)2.
We can then express our integral as

I = ζ(2)−
∞∑
n=0

1

(3n+ 1)2
−
∞∑
n=0

1

(3n)2
−
∞∑
n=0

1

(3n+ 1)2

= ζ(2)− ζ(2)

9
− 2

∞∑
n=0

1

(3n+ 1)2

=
8ζ(2)

9
− 2

∞∑
n=0

1

(3n+ 1)2

Factoring out a 9 from the sum above we obtain:

I =
4π2

27
− 2

9

∞∑
n=0

1(
n+ 1

3

)2
We can now use the series expansion of the trigamma function,

ψ(1)(x) =
∞∑
n=0

1

(n+ x)2

∴ I =
4π2

27
− 2

9
ψ(1)

(
1

3

)

Example 4: Evaluate
∫ 1

0

5 lnx− x5 + 1

(1− x) lnx
dx

Solution

Denote
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Figure 10.6: Graph of y = 5 lnx−x5+1
(1−x) lnx

f(α) =

∫ 1

0

α lnx− xα + 1

lnx(1− x)
dx

Differentiating under the integral sign,

f ′(α) =

∫ 1

0

lnx− xα lnx

(1− x) lnx
dx

=

∫ 1

0

1− xα

1− x
dx

By (6.6), we know:

Hα =

∫ 1

0

1− xα

1− x
dx
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Therefore,

f ′(α) = Hα

We can now obtain an expression for f(α) by integrating.

f(α) =

∫
f ′(α) dα

=

∫
Hα dα

=

∫
ψ(α+ 1) + γ dα

= ln Γ(α+ 1) + γα+ C

Where we used (10.4). Since f(0) = 0, we can write

C = 0

∴
∫ 1

0

α lnx− xα + 1

lnx(1− x)
dx = ln Γ(α+ 1) + γα

Plugging in α = 5,

∫ 1

0

5 lnx− x5 + 1

(1− x) lnx
dx = ln 120 + 5γ

Example 5: Evaluate
∫ 1

0
xHx dx

Solution

By (10.4), we have:

Hx = ψ(x+ 1) + γ
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Figure 10.7: Graph of y = xHx

Therefore,

I =

∫ 1

0
x(ψ(x+ 1) + γ)dx

We can use the recurrence relation

ψ(x+ 1) = ψ(x) +
1

x
(10.8)

=⇒ I =

∫ 1

0
xψ(x) + γx+ 1 dx

=
γ

2
+ 1 +

∫ 1

0
xψ(x)dx

We can apply IBP with u = x, dv = ψ(x)dx on the integral above,
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∫ 1

0
xψ(x)dx =

[
x ln Γ(x)

]1
0
−
∫ 1

0
ln Γ(x) dx

We have already evaluated this integral back in chapter 2 (See
(2.4)).

∴ I =
γ

2
+ 1− ln

(√
2π
)

Example 6: Evaluate the series
∞∑
n=0

1

n2 + 1

Solution

We will introduce the following theorem:

Theorem

Let x be a complex number. The following equality then
holds:

∞∑
k=1

1

k2 + x2
=

1 + πx cothxπ

2x2
(10.9)

Proof. Recall the product definition of the sine function given in
(9.8):

sinx = x

∞∏
k=1

(
1− x2

(kπ)2

)
Substituting x→ ix we get:

sin ix = ix

∞∏
k=1

(
1 +

x2

(kπ)2

)
(10.10)

sinhx = x
∞∏
k=1

(
1 +

x2

(kπ)2

)
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Where in the last step we used the definition of the hyperbolic sine.
Taking the natural logarithm of both sides,

ln sinhx = lnx+

∞∑
k=1

ln

(
1 +

x2

(kπ)2

)

We proceed to differentiate both sides with respect to x to obtain:

(sinhx)′

sinhx
=

1

x
+
∞∑
k=1

(
1 + x2

(kπ)2

)′(
1 + x2

(kπ)2

)

∴ cothx =
1

x
+

∞∑
k=1

2x

k2π2 + x2

Here term by term differentiation is justified since the series on the
RHS is absolutely convergent. Substituting x→ πx then gives:

cothπx =
1

πx
+
∞∑
k=1

2πx

k2π2 + π2x2

=
1

πx
+

1

π

∞∑
k=1

2x

k2 + x2
(10.11)

Manipulating the above expression,
∞∑
k=1

1

k2 + x2
=
πx cothπx− 1

2x2

We can extend the sum above by adding the term when k = 0,
which is 1

x2
:

∞∑
k=0

1

k2 + x2
=

1 + πx cothπx

2x2
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Substituting x2 = 1 then gives

∞∑
k=0

1

k2 + 1
=

1 + π cothπ

2

10.5 Exercise Problems

1. Evaluate lim
x→0

ln
x
√
x!

2. Find
∫ ∞
0

x2 lnx

ex
dx

3. Derive the reflection identity ψ(1− z)− ψ(z) = π cotπz

4. Find
∞∑
k=1

ψ(1)(k)

k

5.

Challenge Problem

Prove that

ψ(x) =

∫ ∞
0

e−t

t
− e−xt

1− e−t
dt

6.

Challenge Problem

Evaluate ∫ π/2

0
x3 cscx dx
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11.1 Definition

Definition

The beta function, or the Euler integral of the first kind, is
most commonly defined as:

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt (11.1)

For R(x),R(y) > 0. A key property of the beta function is

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(11.2)

Figure 11.1: Graph of z = B(x, y)
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11.2 Special Values

B
(

1

2
,
1

2

)
= π

B
(

1

3
,
2

3

)
=

2π√
3

B
(

1

4
,
3

4

)
= π
√

2

B (x, 1) =
1

x

11.3 Properties and Representations

We will begin this section by deriving a trigonometric integral for
the beta function.

Theorem

The beta function can be given by:

B(x, y) = 2

∫ π
2

0
cos2x−1(θ) sin2y−1(θ)dθ, R(x),R(y) > 0

(11.3)
Here, R(·) denotes the real part.

Proof. Consider the definition of the gamma function, (1.7)

Γ(n+ 1) = n! =

∫ ∞
0

tne−tdt

We can then write
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Γ(n+ 1)Γ(k + 1) =

∫ ∞
0

tne−tdt

∫ ∞
0

uke−udu

Substituting t = x2 and u = y2,

Γ(n+ 1)Γ(k + 1) = 4

∫ ∞
0

x2n+1e−x
2
dx

∫ ∞
0

y2k+1e−y
2
dy

Notice that e−x2 is symmetric around x = 0. Thus,

Γ(n+ 1)Γ(k + 1) =

∫ ∞
−∞
|x|2n+1e−x

2
dx

∫ ∞
−∞
|y|2k+1e−y

2
dy (11.4)

=

∫ ∞
−∞

∫ ∞
−∞
|x|2n+1e−x

2 |y|2k+1e−y
2
dx

Transforming into polar coordinates with x = r cos θ, y = r sin θ

Γ(n+ 1)Γ(k + 1) =

∫ 2π

0

∫ ∞
0

r · e−r2 |r cos θ|2n+1|r sin θ|2k+1drdθ

=

∫ 2π

0

∫ ∞
0

r2n+2k+3e−r
2 |cos θ|2n+1|sin θ|2k+1drdθ

=

[∫ ∞
0

r2n+2k+3e−r
2
dr

] [∫ 2π

0
|cos θ|2n+1|sin θ|2k+1dθ

]

Notice that the underlined integrand is periodic with a period of π2 .
Thus,

Γ(n+ 1)Γ(k + 1)

= 4

[∫ ∞
0

r2n+2k+3e−r
2
dr

][∫ π
2

0
|cos θ|2n+1|sin θ|2k+1dθ

]
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Since cos θ and sin θ are non-negative for all θ ∈
[
0, π2

]
, we can get

rid of the absolute value sign.

Γ(n+1)Γ(k+1) = 4

[∫ ∞
0

r2n+2k+3e−r
2
dr

][∫ π
2

0
cos2n+1(θ) sin2k+1(θ)dθ

]

Substituting u = r2, du = 2rdr gives

Γ(n+1)Γ(k+1) = 2

[∫ ∞
0

un+k+1e−udu

] [∫ π
2

0
cos2n+1(θ) sin2k+1(θ)dθ

]

We will now use the definition of the gamma function to get

Γ(n+ 1)Γ(k + 1) = 2Γ(n+ k + 2)

∫ π
2

0
cos2n+1(θ) sin2k+1(θ)dθ

Γ(n+ 1)Γ(k + 1)

Γ(n+ k + 2)
= 2

∫ π
2

0
cos2n+1(θ) sin2k+1(θ)dθ

By (11.2), we can express the LHS as:

B(n+ 1, k + 1) = 2

∫ π
2

0
cos2n+1(θ) sin2k+1(θ)dθ

Or alternatively,

B(x, y) = 2

∫ π
2

0
cos2x−1(θ) sin2y−1(θ)dθ

For R(x),R(y) > 0.
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A shorter method to derive (11.3) is through the definition given
in (11.1). The substitution t = cos2 u, dt = −2 cosu sinu du into
(11.1) gives

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt = −2

∫ 0

π
2

cos2x−1(u) sin2y−1(u) du

= 2

∫ π
2

0
cos2x−1(u) sin2y−1(u) du

We will now prove an interesting identity.

Theorem

The beta function has a recursive property given by:

B(x, y) = B(x, y + 1) + B(x+ 1, y) (11.5)

Proof. Notice that by (11.2) we can write

B(x+ 1, y) =
Γ(x+ 1)Γ(y)

Γ(x+ y + 1)

=
xΓ(x)Γ(y)

(x+ y)Γ(x+ y)
=

x

x+ y
· Γ(x)Γ(y)

Γ(x+ y)

We now have the recurrence relation

B(x+ 1, y) =
x

x+ y
· B (x, y) (11.6)

And, by symmetry,

B(x, y + 1) =
y

x+ y
· B(x, y)
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Hence,

B(x, y + 1) + B(x+ 1, y) =
x

x+ y
· B (x, y) +

y

x+ y
· B(x, y)

∴ B(x, y) = B(x, y + 1) + B(x+ 1, y)

Now, for one more!

Theorem

An alternative integral representation of the beta function is
given by

B(x, y) =

∫ ∞
0

ux−1

(1 + u)x+y
du , R(x),R(y) > 0 (11.7)

Proof. The substitution t = u
u+1 , dt = 1

(u+1)2
du into (11.1) gives

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt

=

∫ ∞
0

ux−1

(1 + u)x−1(1 + u)y−1(1 + u)2
du

=

∫ ∞
0

ux−1

(1 + u)x+y
du

For R(x),R(y) > 0.
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11.4 Some Problems

Example 1: Find
∫ ∞
0

lnx

1 + xn
dx

Figure 11.2: Graph of y = lnx
1+x2

Solution

Substituting u = xn, du = nxn−1dx gives

I =
1

n2

∫ ∞
0

u
1
n
−1 lnu

1 + u
du

From the definition of the beta function given in (11.7),

B(x, y) =

∫ ∞
0

tx−1

(1 + t)x+y
dt



11.4. SOME PROBLEMS 303

Our integral is simply

I =
1

n2
∂

∂x
B(x, 1− x)

∣∣∣∣
x= 1

n

Since

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

We can express I as

I =
1

n2
∂

∂x

[
Γ(x)Γ(1− x)

]
x= 1

n

Recall Euler’s reflection formula,

Γ(x)Γ(1− x) = π csc(πx)

Hence,

I =
1

n2
∂

∂x

[
π csc(πx)

]
x= 1

n

= −π
2

n2
cot

(
π

n

)
csc

(
π

n

)

Example 2: Evaluate
∫ ∞
0

dx√
1 + x4(1 + xπ)

Solution
We will solve a generalized form of the integral here. Define

f(α) =

∫ ∞
0

dx√
1 + x4(1 + xα)
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Figure 11.3: Graph of y = 1√
1+x4(1+xπ)

We then proceed to apply the u-substitution u = 1
x , dx = −du

u2

f(α) =

∫ ∞
0

dx√
1 + x4(1 + xα)

=

∫ 0

∞

1√
1 + 1

u4

(
1 + 1

uα

) · −du

u2

=

∫ ∞
0

du
√
u4 + 1

(
1 + 1

uα

)
=

∫ ∞
0

du√
u4 + 1

· uα

1 + uα

Therefore,

2f(α) =

∫ ∞
0

du√
u4 + 1

· uα

1 + uα
+

∫ ∞
0

dx√
1 + x4

· 1

1 + xα
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After combining these integrals we obtain

2f(α) =

∫ ∞
0

dx√
1 + x4

·
(

xα

1 + xα
+

1

1 + xα

)
︸ ︷︷ ︸=1

2f(α) =

∫ ∞
0

dx√
1 + x4

Turns out that π was just a distractor! We will now substitute x =√
tanu, dx = sec2 u

2
√
tanu

du

2f(α) =
1

2

∫ π
2

0

du√
1 + tan2 u

· sec2 u√
tanu

=
1

2

∫ π
2

0

du

secu
· sec2 u√

tanu

=
1

2

∫ π
2

0

secu√
tanu

du

=
1

2

∫ π
2

0
cos−

1
2 (u) sin−

1
2 (u)du

Using (11.3) gives

8f(α) =

(
Γ
(
1
4

))2

Γ
(
1
2

) =

(
Γ
(
1
4

))2

√
π

Therefore,

∫ ∞
0

dx√
1 + x4(1 + xπ)

=

(
Γ
(
1
4

))2

8
√
π

(11.8)

Example 3: Find
∫ π

2

0

cos2 x√
1 + cos2 x

dx
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Figure 11.4: Graph of y = cos2 x√
1+cos2 x

Solution

We first substitute u = cos4 x =⇒ du = −4 cos3 x sinx dx. We
proceed to solve for dx in terms of u.

dx =
−du

4 cos3 x sinx

=
−du

4u
3
4 sinx

Note that sinx =
√

1− cos2 u =
√

1−
√
u. Therefore,

dx =
−du

4u
3
4

√
1−
√
u

Thus,

I =

∫ 0

1

√
u√

1 +
√
u
· du

4u
3
4

√
1−
√
u
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=
1

4

∫ 1

0
u−

1
4 (1− u)−

1
2 du =

1

4
B

(
3

4
,
1

2

)
We recall that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

Therefore,

I =
Γ
(
3
4

)
Γ
(
1
2

)
4Γ
(
5
4

)
=

Γ
(
3
4

)
Γ
(
1
2

)
Γ
(
1
4

)
Upon simplifying we obtain:

∴
∫ π

2

0

cos2 x√
1 + cos2 x

dx =
Γ
(
3
4

)2
√

2π
(11.9)

Example 4: Evaluate
∫ ∞
0

dx

1 + xn

Solution

Substituting x =
n
√

tan2 u, dx = 2
n cscu secu tan2/n u du gives

I =

∫ ∞
0

dx

1 + xn
=

2

n

∫ π/2

0
cos1−2/n u sin−1+2/n du

Using (11.3),

I =
1

n
B
(

1− 1

n
,

1

n

)
=

1

n
Γ

(
1− 1

n

)
Γ

(
1

n

)
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I =
π

n
csc

(
π

n

)
Where in the last step we used Euler’s reflection formula.

We will now prove the following result.

Theorem

The Legendre duplication formula is given by:

Γ(x)Γ

(
x+

1

2

)
= 21−2xΓ(2x)

√
π

Proof. Recall that

sin 2t = 2 sin t cos t

=⇒ sin2x−1(2t)

22x−1
= cos2x−1(t) sin2x−1(t)

And,

B(x, x) = 2

∫ π
2

0

sin2x−1(2t)

22x−1
dt

By (11.3). The substitution u = 2t then gives

B(x, x) = 21−2x
∫ π

0
sin2x−1(u)du

Since the integrand is symmetric around u = π
2 , we can write

B(x, x) = 2 · 21−2x
∫ π

2

0
sin2x−1(u)du
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= 21−2x · B
(
x,

1

2

)

= 21−2x ·
Γ(x)Γ

(
1
2

)
Γ
(
x+ 1

2

)
Moreover,

B(x, x) =
Γ(x)Γ(x)

Γ(2x)

Putting it all together,

∴ Γ

(
x+

1

2

)
Γ(x) = 21−2x · Γ(2x)

√
π (11.10)

Since Γ
(
1
2

)
=
√
π.

11.5 Exercise Problems

1. Prove that B(x, y) = B(y, x) using the integral definition given in
(11.1).

2. Evaluate
∫ π/2

0

√
sinx dx

3. Find a closed form for
∫ π/2

0
ln sinx ln tanx dx

4. Use differentiation under the integral sign and the beta function

to show that
∫ 1

0
lnx ln(1− x) dx = 2− π2

6
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5. Prove that the value of an integral of the form∫ ∞
0

dx

(1 + xa)b (1 + xc)

Is independent of c if ab = 2 (See (11.8)).

6. Evaluate
∫ ∞
0

4
√

1 + x4 − x dx

7.

Challenge Problem

Evaluate Watson’s integral∫ π

0

∫ π

0

∫ π

0

dx dy dz

1− cosx cos y cos z

Hint: Use the substitutions x = 1
2 tanα, y = 1

2 tanβ, and
z = 1

2 tan γ and then use spherical coordinates.
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12.1 Definition

Introduced by Euler in the first half of the 18th century, and then
expanded on by Riemann’s seminal 1859 paper On the Number of
Primes Less Than a Given Magnitude, the zeta function continues
to be vital not only in analysis but other domains of mathematics
such as number theory. Take the Riemann hypothesis, a centuries
old unsolved problem, which arose from investigating the nontrivial
zeroes of the zeta function. This problem has intimate ties to num-
ber theory and the distribution of primes, as shown by Riemann in
his 1859 paper1.

Definition

The Riemann zeta function, usually denoted as ζ(·), is most
commonly defined as:

ζ(s) =
∞∑
n=1

1

ns
(12.1)

12.2 Special Values

Some notable values include:

ζ(−1) = − 1

12
Via analytic continuation

ζ(0) = −1

2
Via analytic continuation

ζ(2) =
π2

6
ζ(3) ≈ 1.202 This is known as Apery’s constant

ζ(4) =
π4

90
1B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen

Grösse, Monatsber. Berlin. Akad. (1859).
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Figure 12.1: Graph of y = ζ(x). Notice that the function ζ(x) di-
verges at x = 1. Moreover, limx→∞ ζ(x) = 1

We can easily prove some of these values. The most popular re-
sult here is the evaluation of ζ(2), which is also known as the Basel
problem. We will present Euler’s original approach to the problem
below.

Proposition. The summation of the reciprocals of the squares of
the natural numbers is given by:

ζ(2) =
π2

6
(12.2)

Proof. Recall the Taylor series expansion of sinx:

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 =

x

1!
− x3

3!
+
x5

5!
+ · · ·
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Dividing both sides by x,

sinx

x
=
∞∑
n=0

(−1)n

(2n+ 1)!
x2n =

1

1!
− x2

3!
+
x4

5!
+ · · ·

Now, consider the infinite product definition of sinx
x given in (9.8).

sinx

x
=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·

We will now take the sum of the coefficients of x2 (Which is al-
lowed by Newton’s Identities2):

Sum of the coefficients of x2 = −
(

1

π2
+

1

4π2
+

1

9π2
+ · · ·

)

= − 1

π2

∞∑
n=1

1

n2

The above expression must be equal to the sum of the coefficients
of x2 in the Taylor series expansion of sinx

x . Therefore,

− 1

3!
= − 1

π2

∞∑
n=1

1

n2

∴
∞∑
n=1

1

n2
= ζ(2) =

π2

6

2See Mead, D. G. (1992). Newtons Identities. The American Mathematical
Monthly, 99(8), 749. doi:10.2307/2324242
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Now, using similar logic, we will attempt to evaluate ζ(4).

Proposition. ζ(4) can be written as:

ζ(4) =
π4

90
(12.3)

Proof. Since ζ(2) = π2

6 , we can write:

∞∑
n=1

1

π2n2
=

1

6

Squaring the expression above gives

 ∞∑
n=1

1

π2n2

2

=
1

36

The LHS can be expressed as:

 ∞∑
n=1

1

π2n2

2

=
1

π4

(
1

12
+

1

22
+

1

32
· · ·
)(

1

12
+

1

22
+

1

32
· · ·
)

=

∞∑
n=1

1

π4n4
+ 2

∑
n<k

1

π4n2k2
(12.4)

To see why this is true, simply expand a product of two finite sums.
For example,

(
1

12
+

1

22
+

1

32

)(
1

12
+

1

22
+

1

32

)
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Similarly to how we handled the evaluation of ζ(2), we will now
look at the sum of the coefficients of x4. In the infinite product ex-
pansion of sinx

x , this is

Sum of coefficients of x4 =
1

π4

[ 1

12

(
1

22
+

1

32
+ · · ·

)
+

1

22

(
1

32
+

1

42
+ · · ·

)
+ · · ·

]

=
∑
n<k

1

π4n2k2

This must in turn be equal to the coefficient of x4 in the Taylor
series expansion of sinx

x . Therefore,

∑
n<k

1

π4n2k2
=

1

5!
=

1

120

We can plug this result into (12.4) to obtain:

1

36
=
∞∑
n=1

1

π4n4
+ 2

(
1

120

)
∞∑
n=1

1

π4n4
=

1

90

∴
∞∑
n=1

1

n4
=
π4

90
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12.3 Properties and Representations

The most well-known form of the Riemann zeta function is its se-
ries representation, (12.1), which was considered by Euler in 1740
for positive integral values of s. The Russian mathematician Pafnuty
Chebyshev then extended the function through analytic continua-
tion to the following integral form:

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx (12.5)

Perhaps the most notable aspect about the zeta function is its rela-
tion to prime numbers:

Theorem

The Riemann zeta function can be expressed as

ζ(s) =
∏

p prime

1

1− p−s
(12.6)

Euler proved the above relationship in his thesis, Variae observa-
tiones circa series infinitas (Various Observations about Infinite
Series) in 1737. Euler’s product remains an important formula in
analytical number theory. It has been named the "all-important
formula" by Julian Havil3. We will present an elementary proof of
(12.6) below.

Proof. Consider the geometric series formula

∞∑
n=1

rn = (1− r)−1

3Havil, J. "The All-Important Formula." §7.1 in Gamma: Exploring Euler’s
Constant. Princeton, NJ: Princeton University Press, pp. 61-62, 2003.
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For |r|< 1. Using this formula, we can write

(1− p−s)−1 =
∞∑
n=1

p−sn

For some prime p and s > 1. The convergence of this series is easily
demonstrable as the smallest prime number is 2. Notice that

(1− 2−s)−1 = 1 +
1

2s
+

1

4s
+

1

8s
+ · · ·

And,

(1− 3−s)−1 = 1 +
1

3s
+

1

9s
+

1

27s
+ · · ·

Multiplying the two expressions above gives

(1− 2−s)−1(1− 3−s)−1 =

(
1 +

1

2s
+

1

4s
+

1

8s
· · ·
)

·
(

1 +
1

3s
+

1

9s
+

1

27s
· · ·
)

Notice that this will produce all numbers of the form 2a13a2 , where
a1, a2 ∈ N0. Define S(p1, p2, · · · , pn) as the set of all numbers that
can be expressed as pa11 p

a2
2 · · · pann where an ∈ N0. Note that there

are no duplications in S by the fundamental theorem of arithmetic.
Using our new notation, we have

(1− 2−s)−1(1− 3−s)−1 =
∑

n∈S(2,3)

1

ns

Similarly,
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(1− 2−s)−1(1− 3−s)−1(1− 5−s)−1 · · · (1− p−sk )−1 =
∑

n∈S(2,3,5,···,pk)

1

ns

Where pk is the kth prime number. Taking the limit as k → ∞
gives:

lim
k→∞

(1− 2−s)−1(1− 3−s)−1(1− 5−s)−1 · · · (1− p−sk )−1

= lim
k→∞

∑
n∈S(2,3,5···,pk)

1

ns

Since

lim
k→∞

S(2, 3, 5 · · · , pk) ≡ N

We can write

lim
k→∞

∑
n∈S(2,3,5···,pk)

1

ns
=

∞∑
n=1

1

ns

By the fundamental theorem of arithmetic. Thus,

ζ(s) =
∏

p prime

1

1− p−s

We will now present a generating function that will aid us in our
later theorem dealing with the general evaluation of any ζ(2n)
where n ∈ N+.
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Theorem

The generating function for even values of the zeta function
is given by:

1

2
(1− πz cotπz) =

∞∑
n=1

ζ(2n)z2n (12.7)

For |z| < 1.

Proof. Consider the result from (9.7):

sinπz = πz
∞∏
k=1

(
1− z2

k2

)

Taking the natural logarithm of both sides gives

ln sinπz = lnπ + ln z +

∞∑
k=1

ln

(
1−

(
z

k

)2
)

By taking the derivative term by term we get (Which is justified
since for |z|< 1, the series is absolutely convergent):

π cotπz =
1

z
−
∞∑
k=1

2z

k2
· 1

1−
(
z
k

)2
=

1

z
− 2

∞∑
k=1

z

k2
· 1

1−
(
z
k

)2
Now, we will use the power series expansion of 1

1−x

1

1− x
=

∞∑
n=0

xn
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Which holds for any |x|< 1. Since
(
z
k

)2
< 1 for |z|< 1, we can write

1

1−
(
z
k

)2 =
∞∑
n=0

(
z

k

)2n

And,

π cotπz =
1

z
− 2

∞∑
k=1

∞∑
n=0

z2n+1

k2n+2

=
1

z
− 2

∞∑
n=0

z2n+1
∞∑
k=1

1

k2n+2

By the definition of the zeta function, the inner sum is ζ(2n + 2).
Thus,

π cotπz =
1

z
− 2

∞∑
n=0

ζ(2n+ 2)z2n+1

We can easily rewrite the sum so it starts at n = 1,

π cotπz =
1

z
− 2

∞∑
n=1

ζ(2n)z2n−1

∴ πz cotπz = 1− 2

∞∑
n=1

ζ(2n)z2n (12.8)

After some algebraic manipulation we obtain

∞∑
n=1

ζ(2n)z2n =
1

2
(1− πz cotπz)
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Using this formula, we can calculate a recursive formula for any
ζ(2n), n ∈ N.

We have already seen how to evaluate ζ(2) and ζ(4). But, what
about ζ(6)? Maybe even ζ(8)? Instead of deriving each even zeta
value separately, we will present a recursive formula for evaluating
any ζ(2n).

Theorem

The recursive formula for even zeta function values is given
by:

ζ(2n) =
(−1)n+1π2n

(2n+ 1)!
n+

n−1∑
k=1

(−1)k+1π2k

(2k + 1)!
ζ(2n− 2k) (12.9)

For n ∈ N \ {1}. \ denotes the exclusion of an element from a
set.

Proof. This theorem might look intimidating, but the proof we will
present uses only elementary techniques. We begin by trying to
evaluate a power series for z cot z. Consider

z cot z =

∞∑
n=0

a(n)z2n

Where we wrote z2n instead of zn due to the generating function
we derived above. Here, a(n) is an arbitrary real-valued function.
Thus,

z · cos z

sin z
=

∞∑
n=0

a(n)z2n
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cos z =
sin z

z

∞∑
n=0

a(n)z2n

We can use the well-known Taylor series expansions of cos z and
sin z:

cos z =
∞∑
n=0

(−1)nz2n

(2n)!

sin z =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!

Plugging these series in gives

∞∑
n=0

(−1)nz2n

(2n)!
=

 ∞∑
n=0

(−1)nz2n

(2n+ 1)!

 ∞∑
n=0

a(n)z2n


We can apply the identity ∞∑

n=0

an

 ∞∑
n=0

bn

 =
∞∑
n=0

n∑
k=0

akbn−k

In our case, an = (−1)nz2n
(2n+1)! , bn = a(n)z2n. Therefore,

 ∞∑
n=0

(−1)nz2n

(2n+ 1)!

 ∞∑
n=0

a(n)z2n

 =

∞∑
n=0

n∑
k=0

(−1)kz2k

(2k + 1)!
·a(n−k)z2n−2k

=
∞∑
n=0

z2n

 n∑
k=0

(−1)k
a(n− k)

(2k + 1)!


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Then,

∞∑
n=0

(−1)nz2n

(2n)!
=

∞∑
n=0

 n∑
k=0

(−1)k
a(n− k)

(2k + 1)!

 z2n (12.10)

Notice that the coefficient of z2n must be equal on both sides to
preserve equality. Thus,

(−1)n

(2n)!
=

n∑
k=0

(−1)k
a(n− k)

(2k + 1)!

We can isolate the first term of the series above, which is simply
a(n).

n∑
k=0

(−1)k
a(n− k)

(2k + 1)!
= a(n) +

n∑
k=1

(−1)k
a(n− k)

(2k + 1)!

We can now finally obtain an expression for a(n)!

a(n) =
(−1)n

(2n)!
−

n∑
k=1

(−1)k
a(n− k)

(2k + 1)!
(12.11)

Notice that the coefficient of z2n in the LHS of (12.10) when n = 0

is (−1)0
(2·0)! = 1. This must be equal to the RHS’s coefficient when

n = 0. Hence,

1 =

0∑
k=0

(−1)k
a(n− k)

(2k + 1)!

∴ a(0) = 1

We can use this value to break up the series in (12.11) further. Iso-
lating the value when k = n gives:
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a(n) =
(−1)n

(2n)!
− (−1)n

(2n+ 1)!
−
n−1∑
k=1

(−1)k
a(n− k)

(2k + 1)!

=
(−1)n2n

(2n+ 1)!
−
n−1∑
k=1

(−1)k
a(n− k)

(2k + 1)!
(12.12)

From (12.8) we can write

z cot z = 1− 2

∞∑
n=1

ζ(2n)

(
z

π

)2n

= 1− 2

∞∑
n=1

ζ(2n)
z2n

π2n
(12.13)

By substituting πz → z. Notice that our hypothetical series is

z cot z =
∞∑
n=0

a(n)z2n

= 1 +
∞∑
n=1

a(n)z2n

By matching up the coefficients of our hypothetical series and the
series in (12.13), we obtain that

a(n) = −2ζ(2n)

π2n

Plugging that into (12.12),

−2ζ(2n)

π2n
=

(−1)n2n

(2n+ 1)!
−
n−1∑
k=1

(−1)k
−2ζ(2n− 2k)

π2n−2k

(2k + 1)!
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∴ ζ(2n) =
(−1)n+1π2nn

(2n+ 1)!
+

n−1∑
k=1

(−1)k+1π2k

(2k + 1)!
ζ(2n− 2k)

Hence proved. This formula can be used to find all even zeta val-
ues:

ζ(2) =
π2

6

ζ(4) = −2 · π4

5!
+
π2

3!
ζ(2) =

π4

90

ζ(6) =
3π6

7!
− π4

5!
ζ(2) +

π2

3!
ζ(4) =

π6

945

ζ(8) = −4 · π8

9!
+
π6

7!
ζ(2)− π4

5!
ζ(4) +

π2

3!
ζ(6) =

π8

9450

And so on.

12.4 Some Problems

Example 1: Evaluate
∑

p prime

ln p

p2 − 1

Solution

We will start off by the prime product formula for the zeta func-
tion, (12.6):

ζ(s) =
∏

p prime

1

1− p−s

Taking the natural logarithm of both sides,
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Figure 12.2: Plot of the partial sums

ln
(
ζ(s)

)
= ln

 ∏
p prime

1

1− p−s


Since ln

(∏
an
)

=
∑

ln an, we have:

ln
(
ζ(s)

)
=

∑
p prime

ln

(
1

1− p−s

)

= −
∑

p prime

ln
(

1− p−s
)

We can differentiate both sides with respect to s to get:

−ζ
′(s)

ζ(s)
=

∑
p prime

ln p

ps − 1
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Our desired sum is then

S = −ζ
′(2)

ζ(2)
(12.14)

Substituting (8.8) into (12.14) gives

∑
p prime

ln p

p2 − 1
= 12 lnA− γ − ln(2π)

Example 2: Evaluate
∞∑
n=2

ζ(n)

2n

Figure 12.3: Plot of the partial sums

Solution

We will generalize this result. Define

f(α) =

∞∑
n=2

(−α)nζ(n)
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For |α| < 1. By the definition of the zeta function, we have

f(α) =

∞∑
n=2

∞∑
k=1

(−α)n

kn

Notice that our sum is absolutely convergent. We can then safely
interchange summations to get

f(α) =
∞∑
k=1

∞∑
n=2

(−α)n

kn

=

∞∑
k=1

∞∑
n=2

(−1)n
(
α

k

)n

Recall the power series expansion of
1

1 + x
:

1

1 + x
=

∞∑
n=0

(−1)nxn

We can multiply by x2 to obtain:

x2

1 + x
=
∞∑
n=2

(−1)nxn

Therefore,

f(α) =
∞∑
k=1

((
α

k

)2

· 1

1 + α
k

)

=

∞∑
k=1

(
α2

k(k + α)

)
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= α
∞∑
k=1

(
1

k
− 1

k + α

)

=⇒ f(α) = α
[
γ + ψ(α+ 1)

]
Our desired sum is f

(
−1

2

)
. Thus,

f

(
−1

2

)
= −1

2

[
γ + ψ

(
1

2

)]

Since

ψ

(
1

2

)
= −2 ln 2− γ

We have

∞∑
n=2

ζ(n)

2n
= ln 2

Example 4: Evaluate
∫ π

2

0

ln cosx ln sinx

tanx
dx

Solution

Notice that we can write

I =

∫ π
2

0

ln sinx ln cosx

tanx
dx

=

∫ π
2

0

(ln sinx ln cosx) cosx

sinx
dx
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Figure 12.4: Graph of y = ln cosx ln sinx
tanx

We now substitute y = sinx, dy = cosx dx to get

I =

∫ 1

0

ln y ln
(√

1− y2
)

y
dy

=
1

2

∫ 1

0

ln y ln
(
1− y2

)
y

dy

We now integrate by parts by setting u = ln
(
1− y2

)
, dv = ln y

y dy

I =
1

2

[
ln
(
1− y2

)
ln2 y

2

]1
0

+
1

2

∫ 1

0

y ln2 y

1− y2
dy

Consider the first term. Using the power series expansion of ln(1− x),
we can express the numerator as

A = ln2 y ln
(

1− y2
)

= −
∞∑
n=1

y2n ln2 y

n
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It is easy to see that the expression is zero when y = 1. We now
need to find limy→0A.

lim
y→0

A = − lim
y→0

∞∑
n=1

y2n ln2 y

n
= −

∞∑
n=1

lim
y→0

ln2 y
n
y2n

We can see that for each n ∈ N, there is an ∞∞ case here. Hence, we
will use our friend: L’Hopital’s rule.

=⇒ lim
y→0

A =

∞∑
n=1

lim
y→0

ln y
n2

y2n

Again, we have a ∞∞ case, so we will use L’Hopital’s rule once more.

lim
y→0

A = −
∞∑
n=1

lim
y→0

y2n

2n3

The evaluation of this sum gives

lim
y→0

A = 0

Hence,

[
ln
(
1− y2

)
ln2 y

2

]1
0

= 0− 0 = 0

We then have

I =
1

2

∫ 1

0

y ln2 y

1− y2
dy
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Substituting y = et , dy = etdt,

I =
1

2

∫ 0

−∞

e2tt2

1− e2t
dt

We then multiply by
e−2t

e−2t
to get

I =
1

2

∫ 0

−∞

t2

e−2t − 1
dt

Substituting u = −2t, du = −2 dt,

I =
1

16

∫ ∞
0

u2

eu − 1
du

By equation (12.5) we know that

ζ(s) =
1

Γ(s)

∫ ∞
0

us−1

eu − 1
du

Therefore,

I =
1

16
Γ(3)ζ(3) =

ζ(3)

8

Example 5: Evaluate
∫ ∞
0

x10

e3x − 1
dx

Rather random numbers? Must be something we have to general-
ize! Define

f(α, β) =

∫ ∞
0

xα

eβx − 1
dx
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Figure 12.5: Graph of y = x10

e3x−1

Notice that we can multiply by e−βx

e−βx
to get:

f(α, β) =

∫ ∞
0

e−βxxα

1− e−βx
dx

Using the power series expansion of 1
1−x gives

x

1− x
=

∞∑
n=1

xn

In our desired integral, x = e−βx. Thus,

f(α, β) =

∫ ∞
0

∞∑
n=1

xαe−βxn dx
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By the dominated convergence theorem, we can interchange sum-
mation and integration,

f(α, β) =

∞∑
n=1

∫ ∞
0

xαe−βxndx

The substitution u = βxn, du = βndx yields:

f(α, β) =
1

βα+1

∞∑
n=1

1

nα+1

∫ ∞
0

uαe−udu

f(α, β) =
ζ(α+ 1)Γ(α+ 1)

βα+1

Where we used the definitions of the gamma and zeta function in
the last step. Our integral is then

f(10, 4) =
ζ(11)Γ(11)

311

12.5 Exercise Problems

1) Evaluate
∞∑
n=2

ζ(n)− 1

2) Show that
∞∑
n=1

(−1)n+1

ns
= (1 − 21−s)ζ(s) (Dirichlet’s eta func-

tion).

3) Find
∫ ∞
0

lnx ln
(

x
x+1

)
(1 + x)2

dx
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4) Evaluate
∫ 1

0

x ln2 x

2(1− x)2
dx

5) Find
∞∑
n=2

ζ(n)− 1

n

6) Find the value of
∫ 1

0

ln(1− x) ln(1 + x)

x
dx

7) Evaluate
∫ π/2

0
x ln sinx dx

8) Prove that all non-trivial zeroes of the Riemann zeta function
have real part 1

2 .
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A Note on Special Functions

The chapters in this part are but an introduction to the field of
special functions, but are nonetheless at the top of the utility lad-
der in terms of their applications. Furthermore, these functions
have been investigated since the times of the great analysts such
as Euler and Gauss, and have been instrumental in mathematics
and science ever since.

It is worth noting that the special functions discussed in the book
are what I would call building special functions. The more special-
ized functions such as the Bessel functions, spherical harmonics,
Legendre polynomials, and Laguerre polynomials, etc, build upon
and derive many identities from the building special functions. Per-
haps, in a second volume, we will explore these functions!
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13.1 Introduction

Although the previous chapters have tremendous utility in pure
mathematics, especially the domain of real and complex analysis,
they are also of great utility in the mathematical sciences. The spe-
cial functions discussed extensively in the previous chapters are ex-
tremely important in these fields, and arise in many advanced ap-
plications. In this part, I aim to present a refined and varied list of
applications of the book’s methods, techniques, and theorems.

However, we have not covered everything! The special functions
we discussed in this book serve as a precursor to many more spe-
cial functions in the mathematical sciences. See "A Note on Special
Functions" for more.

This chapter should serve as a reminder to how beautiful results in
mathematics often translate into other disciplines, and that math-
ematics is truly the language of the universe. This chapter also
poses many interesting questions about the relationships of special
functions and physical phenomena.

These intimate relationships will be explored in depth throughout
this part. Many of the applications will discuss require knowledge
in their respective disciplines, but the discussion of the prerequisite
knowledge will be as extensive as possible to bridge that gap.

In this chapter, applications from classical mechanics to computer
science will be discussed. It is worth noting that this chapter is by
no means all-inclusive. The applications of the methods discussed
in this book are vast, and can not be portrayed accurately in the
scope of a few chapters.
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13.2 Goal of the Part

The various techniques and methods, as well as the various spe-
cial functions considered, are employable in a variety of standard
calculus problems involving areas, arclengths, and volumes of 3-
dimensional or higher objects.

However, the author would like to diverge from the evaluate, find,
etc, terminology used prior in the book. This part is designed to
stimulate an appreciation for not only the mathematics behind
physical laws but the science as well. I hope to accomplish this
through a thorough discussion of the scientific principles and math-
ematics involved.

To the best of the my knowledge, no book has ever combined such
a broad and detailed list of applications with an extensive survey of
integrals and series. This is done such that the reader is familiar-
ized with the utility of the tools they have added to their toolkit,
and develop a further appreciation for these tools.
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14.1 Introduction

We begin this chapter by defining the Lagrangian.

Definition

The Lagrangian is the central feature of Lagrangian me-
chanics. Lagrangian mechanics uses a quantity named the
Lagrangian to summarize the dynamics of the entire system.
The non relativistic Lagrangian is defined as:

L = KE− U

Where U and KE represent potential energy and kinetic en-
ergy, respectively.

Definition

Lagrangian mechanics was introduced by the Italian-French
mathematician and astronomer Joseph-Louis Lagrange in
1788. It introduced a more systematic and sophisticated way
of analyzing classical systems compared to Newtonian me-
chanics. No new physics is introduced in Lagrangian me-
chanics, however, the focus is shifted from analyzing forces
to energies.

14.1.1 The Lagrange Equations

When using the Lagrangian, either the Lagrange equations of the
first kind or the Lagrange equations of the second kind are used to
analyze a particular system.

The Lagrange equations for any general coordinate qi are:1

1Hand, L. N.; Finch, J. D. Analytical Mechanics (2nd ed.). Cambridge Uni-
versity Press. p. 23. ISBN 9780521575720.
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• First kind
∂L

∂rn
− d

dt

∂L

∂ṙn
+

N∑
n=1

λk
∂fi
∂rn

= 0 (14.1)

• Second kind
d

dt

(
∂L

∂q̇n

)
=

∂L

∂qn
(14.2)

Where the subscript n denotes the nth particle, N denotes the
number of constraints and λk denotes the Lagrange multiplier
for the kth constraint equation. Also,

∂

∂rk
≡
(

∂

∂xk
,
∂

∂yk
,
∂

∂zk

)
,

∂

∂ṙk
≡
(

∂

∂ẋk
,
∂

∂ẏk
,
∂

∂żk

)

Where r = (x, y, z) denotes a particle’s position in space and an
overhead dot denotes a time derivative.

14.2 The Falling Chain

Find the time it takes for a heavy chain of mass M and length L to
fall into complete extension if initially the chain is at rest and point
B is held right next to A and then released. There are no internal
friction forces so mechanical energy is conserved. Assume the chain
is inextensible and perfectly flexible.

Solution

Define our 1-dimensional axis as beginning from the ceiling, with
the + direction pointing down. Hence, our initial potential energy
is equal to 0.

When point B is x away from the ceiling, or at point x, the LHS of
the chain is L+x

2 in length. Given that the density of the chain is
M
L , we can write the LHS’s mass as
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A
B

Figure 14.1: Visualization of the falling chain. Figure generated
using TikZ software

MLHS =
L+ x

2L
M

Also, the LHS has a center of mass located at

CMLHS =
L+ x

4

For the RHS, notice that it has length L−x
2 when B is at x, and has

a mass
MRHS =

L− x
2L

M

The LHS of the chain begins at x, so its center of mass is at

CMRHS = x+
L− x

4
=
L+ 3x

4

The total gravitational potential energy of our chain system is sim-
ply the sum of the potential energies of both sides. Equivalently,

U = ULHS + URHS
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Where
ULHS = −g ·MLHS · CMLHS

URHS = −g ·MRHS · CMRHS

Here, g denotes the local acceleration due to gravity. We can then
write

U = −Mg

4L

(
L2 + 2Lx− x2

)
Notice that the LHS is stationary, but the RHS is in motion. The
kinetic energy is then:

KELHS + KELHS = 0 +
ẋ2

2
MRHS

=
M(L− x)ẋ2

4L

Where ẋ is simply the instantaneous velocity of the RHS when
point B is at point x. Notice that the overall energy of the system
must be constant by the principle of the conversation of energy, i.e.

Ex = Einitial

Ux + KEx = Uinitial +���
��:0

KEinitial

The initial energy of the system had no kinetic component, as we
are considering the system before free fall. The center of mass of
the initial system is at L

4 . Hence,

M(L− x)ẋ2

4L
− Mg

4L

(
L2 + 2Lx− x2

)
= −MLg

4

We want to isolate ẋ so that we can figure out the time it takes for
B to reach x = L. With some algebraic manipulations we get

(L− x)ẋ2 − g
(
L2 + 2Lx− x2

)
= −gL2
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(L− x)ẋ2 = gL2 + 2gLx− gx2 − gL2

(L− x)ẋ2 = 2Lgx− gx2 = gx(2L− x)

ẋ =

√
gx(2L− x)

L− x

We can solve for dt, the infinitesmal change in time, as:

dt

dx
=

√
L− x

gx(2L− x)

dt =

√
L− x

gx(2L− x)
dx

Therefore, the time it takes for point B to reach x = L from x =
0 is simply the sum of the infinitesimal dt’s as dt → 0. We have
to sum those infinitesimal time intervals from x = 0, our initial
condition, to x = L, the fully extended position. From chapter two,
we know this notion as the definite integral. Taking the integral
from x = 0 to x = L of both sides we have

T =

∫ L

0

√
L− x

gx(2L− x)
dx (14.3)

Substituting x = 2L sin2
(
u
2

)
, dx = 2L sin

(
u
2

)
cos
(
u
2

)
du = L sinu

gives,

T =

∫ π
2

0

√√√√√ L
(

1− 2 sin2
(
u
2

))
2gL sin2

(
u
2

) (
2L− 2L sin2

(
u
2

)) · L sinu du
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Notice that

1− 2 sin2

(
u

2

)
= 1− 2

(√
1− cosu

2

)2

= 1− 1 + cosu

= cosu

Hence,

T = L

∫ π
2

0

√
cosu

4gL sin2
(
u
2

) (
1− sin2

(
u
2

)) · sinu du

= L

∫ π
2

0

√
cosu sin2 u

4gL sin2
(
u
2

)
cos2

(
u
2

)du

Simplifying,

T =

√
L

g

∫ π
2

0

√
cosu du

Now we have a form we can easily evaluate analytically! Using the
trigonometric form of the beta function, we can express T as

T =

√
L

g
· 1

2
B
(

3

4
,
1

2

)

=

√
L

g
·

Γ
(
3
4

)
Γ
(
1
2

)
2Γ
(
5
4

)
Upon simplifying we get
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T =

(
Γ

(
3

4

))2√
2L

gπ

Alternate Solution

The substitution x = L sin2 u, dx = 2L sinu cosu du into (14.3)
gives

T =

∫ L

0

√
L− x

gx(2L− x)
dx

=

∫ π/2

0

√
L− L sin2 u

gL sin2 u(2L− L sin2 u)
· 2L sinu cosu du

= 2

√
L

g

∫ π/2

0

cos2 u√
2− sin2 u

du

Using the identity cos2 u = 1− sin2 u then gives

T = 2

√
L

g

∫ π/2

0

cos2 u√
1 + cos2 u

du

We have already evaluated this integral in (11.9)! Plugging our re-
sult from there gives the same result,

T =

(
Γ

(
3

4

))2√
2L

gπ
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14.3 The Pendulum

A simple pendulum consists of a mass m suspended by a string of
length L such that it can swing in a plane, as shown in figure 14.2.
Find the period of the pendulum for 180◦ swings.

Figure 14.2: In here, θinitial = 90. This figure was generated
through the software Pysketcher

Solution

The kinetic energy of the pendulum is:

KE =
m
(
Lθ̇
)2

2

Since for circular motion, vtangential = Lθ̇. Here θ̇ denotes the angu-
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lar velocity, or the derivative of angular position.

If we define the potential energy to be U = 0 when the mass is at
its lowest point, we can write

U = −mLg cos θ

When the string is at θ degrees from parallel. Now, we will calcu-
late the Lagrangian.

L = KE− U

= mgL cos θ +
m
(
Lθ̇
)2

2

We will now use Lagrange’s equation of the second kind, (14.2).
Note that

∂L
∂θ

= −mgL sin θ

And,
∂L
∂θ̇

= mL2θ̇

So,

d

dt

(
∂L

∂θ̇

)
= mL2θ̈

Plugging our values into (14.2),

d

dt

(
∂L
∂q̇n

)
=
∂L
∂qn

=⇒ d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ
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∴ mLθ̈ = −mgL2 sin θ

Solving for θ̇,

θ̈ = −g sin θ

L
(14.4)

Note that we can not approximate sin θ ≈ θ, since we are dealing
with 180◦ swings.

Figure 14.3: Notice that for large x, this approximation is not valid

We now want to obtain an expression for θ̇. Consider multiplying
(14.4) by θ̇,

θ̇θ̈ = −g sin θ

L
θ̇

∴ θ̇ dθ̇ = −g sin θ

L
dθ

Integrating both sides,
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θ̇2

2
=
g cos θ

L
+ C

Since we are considering 180◦ swings, the pendulum is stationary at
θ = 90◦. Hence, θ̇ = 0 when θ = π

2 and

C = 0

=⇒ θ̇2

2
=
g cos θ

L

θ̇ =

√
2g cos θ

L

Since θ̇ = dθ
dt , we can separate θ and t as:

dθ

dt
=

√
2g cos θ

L

∴
dθ√
cos θ

=

√
2g

L
dt

Note that the interval θ = 0 to θ = π
2 corresponds with the interval

t = 0 to t = T
4 , where T denotes the period. Thus,

∫ π
2

0

dθ√
cos θ

=

∫ T
4

0

√
2g

L
dt =

T
√

2g
L

4

Solving for T ,

T = 4

√
L

2g

∫ π
2

0

dθ√
cos θ
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Using (11.3),

B(x, y) = 2

∫ π
2

0
cos2x−1(θ) sin2y−1(θ)dθ , R(x),R(y) > 0

We have

T = 2

√
L

2g
B
(

1

4
,
1

2

)
We can convert this to a product of gamma function values, as
shown in (11.2).

T = 2

√
L

2g
·

Γ
(
1
4

)
Γ
(
1
2

)
Γ
(
3
4

)

=

√
L

πg
· Γ2

(
1

4

)

14.4 Point Mass in a Force Field

A point mass of mass m was released from rest at x = x0 under
the influence of a force field of magnitude F = k

xn+1 for k, n ∈ R+

directed towards the origin. How long would it take for the point
mass to reach the origin?

Solution

Note that the case n = 1 corresponds with the inverse square law
of gravity. However, we want to generalize this problem to a force
of arbitrary order. Consider Newton’s second law of motion
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F = ma = m
d2x

dt2
(14.5)

Denoting velocity by v, we have

d2x

dt2
=

dv

dt

Therefore, we can write (14.5) as

F = m

(
dv

dx

)(
dx

dt

)
= mv

dv

dx

By the chain rule. Since the only force acting on our point mass is
due to the force field, we begin with

− k

xn+1
= mv

dv

dx

Rewriting the expression above and integrating both sides,

− k

mxn+1
dx = v dv

∫
− k

mxn+1
dx =

∫
v dv

k

mn
x−n + C =

v2

2

v2 =
2k

mn
x−n + C

Since our point mass starts at rest, we know that v = 0 when x =
x0. Therefore,
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C = − 2k

mnxn0

And,

v2 =
2k

mn
x−n − 2k

mnxn0

=
2k

mn

(
1

xn
− 1

xn0

)
(14.6)

Expressing this in derivative notation,

(
dx

dt

)2

=
2k

mn

(
1

xn
− 1

xn0

)

We now proceed to solve for dt so we can integrate to obtain time

dx

dt
= ±

√√√√ 2k

mn

(
1

xn
− 1

xn0

)
dt

dx
= ±

√
mn

2k
· 1√

1
xn −

1
xn0

∴ dt = ±
√
mn

2k
· 1√

1
xn −

1
xn0

dx (14.7)

Notice that

1√
1
xn −

1
xn0

=
1√

xn0 − xn

xn0x
n
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=
x
n/2
0√

xn0 − xn

xn

=
x
n/2
0√(

x0
x

)n − 1

Therefore, (14.7) can be rewritten as

dt = ±
√
mn

2k
· x

n/2
0√(

x0
x

)n − 1
dx

Integrating from 0 to T ,

∫ T

0
dt = ±xn/20

√
mn

2k

∫ 0

x0

1√(
x0
x

)n − 1
dx

The substitution u = x
x0
, dx = x0 du then gives

T = ±xn/20

√
mn

2k

∫ 0

1

x0√
1
un − 1

du

= ±x1+
n
2

0

√
mn

2k

∫ 0

1

1√
1
un − 1

du

Since T is necessarily positive, we can eliminate the ± symbol.

T = x
1+n

2
0

√
mn

2k

∫ 1

0

1√
1
un − 1

du
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T = x
1+n

2
0

√
mn

2k

∫ 1

0

1√
1
un (1− un)

du

= x
1+n

2
0

√
mn

2k

∫ 1

0

un/2√
1− un

du

Substituting t = un, du =
t
1
n
−1

n
dt,

T = x
1+n

2
0

√
mn

2k

∫ 1

0

√
t√

1− t
·

(
t
1
n
−1

n

)
dt

= x
1+n

2
0

√
m

2nk

∫ 1

0

t
1
n
− 1

2

√
1− t

dt

= x
1+n

2
0

√
m

2nk

∫ 1

0
t
1
n
− 1

2 (1− t)−
1
2 dt (14.8)

The reader should recognize the integral above as the main form
of the beta function, defined in (11.1). Using the beta-gamma rela-
tionship then gives∫ 1

0
t
1
n
− 1

2 (1− t)−
1
2 dt = B

(
1

2
+

1

n
,
1

2

)

=
Γ
(

1
n + 1

2

)
Γ
(
1
2

)
Γ
(

1
n + 1

)

=

√
πΓ
(

1
n + 1

2

)
Γ
(

1
n + 1

)
Plugging this back into (14.8),
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T = x
1+n

2
0

√
m

2nk
·

√
πΓ
(

1
n + 1

2

)
Γ
(

1
n + 1

)
= nx

1+n
2

0

√
mπ

2nk
·

Γ
(

1
n + 1

2

)
Γ
(

1
n

)
Notice that as the point mass approaches the origin, v gets arbi-
trarily large (See (14.6)). However, we know that v can not be-
come indefinitely large due to Einstein’s theory of special relativity.
Moreover, issues of relativistic mass have not been accounted for.
So, this calculation is not relativistically correct. However, it is a
good approximation and is a good exercise in classical mechanics.
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15.1 Introduction

A crystal structure is an ordered arrangement of atoms, ions or
molecules in a crystalline material1. The properties of any crystal
structure mainly rely on the properties of the unit cell, which is
the building block of any crystalline material. The unit cell is the
smallest repeating unit having the symmetry of the full crystalline
structure. The Coulombic forces between the constituents of the
unit cell determine many properties2.

Figure 15.1: A visualization of the crystal structure of NaCl

The key quantity characterizing these Coulombic forces is called
the lattice energy. The lattice energy of a crystalline solid is a

1Hook, J.R.; Hall, H.E. (2010). Solid State Physics. Manchester Physics
Series (2nd ed.). John Wiley Sons. ISBN 9780471928041.

2S. Varughese, M. S. R. N. Kiran, U. Ramamurty and G. R. Desiraju.
Nanoindentation in Crystal Engineering: Quantifying Mechanical Properties
of Molecular Crystals. Angew. Chem. Int. Ed. 2013, 52, 2701-2712.
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measure of the energy released when ions are combined to make a
compound. However, some sources such as the CRC Handbook of
Chemistry and Physics define it oppositely, as the energy required
to convert the crystal into infinitely separated gaseous ions in vac-
uum.

However, the lattice energy is not only determined by the interac-
tions of the ions in the unit cell, but in the crystalline structure as
a whole. The first efforts in calculating these long-range interac-
tions were presented by the German physicist Erwin Madelung3.

Madelung gave the electrostatic potential felt by a single ion in a
crystal by approximating all ions as point charges. This quantity is
named as Madelung’s constant, and is used to determine the lattice
energy through the Born–Landé equation.

Scientific Model

The Born-Landé equation is a means to calculate the lattice
energy of a crystalline ionic compound. It was developed by
the German physicist and mathematician Max Born as well
as the German physicist Alfred Landé. It is given by

E =
NMz+z−e

2

4πε0r

(
1

n
− 1

)
(15.1)

Where

• N = 6.02214076 × 1023 denotes Avogadro’s constant. As
a refresher, this number denotes the number of constituents
(molecules, atoms, formula units, etc.) that are present in one
mole

• M is Madelung’s constant

• z+ is the charge number of the cation
3Madelung E. (1918). Das elektrische Feld in Systemen von regelmäßig an-

geordneten Punktladungen. Phys. Z. XIX: 524–53
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• z− is the charge number of the anion

• e = 1.6022 × 1019C (Coulombs) is the elementary charge, i.e.
the magnitude of the charge of a single electron.

• ε0 is the vacuum permittivity

• r is the distance to the closest ion

• n is the Born exponent, which is experimentally determined

Partial Derivation. The electrostatic potential energy is

E =
1

4πε0
· q1q2
r

For two charges q1 and q2 separated by a distance r. Note that
when we say the charge of a sodium ion Na+ is +1, we mean that
it has a charge of e. Therefore,

E0 = − 1

4πε0
· z+z−e

2

r

For any compound. To account for the virtually infinite long-range
interactions, we multiply by our multiplier M to get

ELR = ME0 = −Mz+z−e
2

4πε0r

Born and Landé suggested that the repulsive attractions between
the lattice ions would be proportional to 1

rn such that

ER =
B

rn

For a constant B. Thus,



15.1. INTRODUCTION 367

E = ELR + ER = −Mz+z−e
2

4πε0r
+
B

rn
(15.2)

Where E denotes the total energy. Note that E must be at a mini-
mum when r = rc, or the equilibrium separation. This is due to the
principle of energy minimization. To set that stipulation, we must
find a constant B such that

dE

dr

∣∣∣
r=rc

= 0

Therefore,

dE

dr
=
Mz+z−e

2

4πε0r2
− nB

rn+1

=⇒ Mz+z−e
2

4πε0r2c
− nB

rn+1
c

= 0

nB

rn+1
c

=
Mz+z−e

2

4πε0r2c

∴ B =
Mz+z−e

2

4πε0n
rn−1c

Plugging B in terms of rc into (15.2) gives

E = −Mz+z−e
2

4πε0rc
+
Mz+z−e

2

4πε0n
rn−1c · 1

rnc

=
Mz+z−e

2

4πε0rc

(
1

n
− 1

)
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�

Madelung’s constant, although primarily of interest in inorganic
chemistry, is also useful in describing the lattice energy of organic
salts. Izgorodina et al. (2009) have described a generalized method,
named the EUGEN method, for calculating the Madelung constant
for any crystal structure4.

In calculating the Madelung constant, we make a few assumptions
about the ions in the crystal structure:

• The charges must have a spherically symmetric distribution of
charge, i.e. a point charge or a charged metal sphere

• The charges must not overlap

• The charges must be stationary with respect to each other

Ions in a crystal lattice do not always have a spherically symmet-
ric electron distribution, and therefore not a spherically symmetric
distribution of charge.

Now that we know how the Madelung constant is used, we will ex-
plore it further. We can begin by defining it mathematically:

4E. Izgorodina; et al. (2009). The Madelung Constant of Organic Salts.
Crystal Growth Design. 9 (11): 4834–4839. doi:10.1021/cg900656z.



15.1. INTRODUCTION 369

Definition

The Madelung constant of the nth ion, usually denoted as
Mn, is defined as

Mn =
∑
n6=k

zkrc
rnk

(15.3)

Where rnk denotes the distance between the nth and the kth

ion, and the sum is taken over all ions in the lattice struc-
ture, which is virtually infinite.

Application. The electric potential felt by the nth ion is:

Vn =
e

4πε0

∑
n6=k

zk
rnk

Where zk denotes the number charge of the kth ion. Notice that we
sum over all k, so that we can account for the long-range interac-
tions produced by every ion in the lattice. By normalizing rnk to
the distance to the closest ion, rc, we obtain

Vn =
e

4πε0rc

∑
n 6=k

zk
rnk/rc

=
e

4πεrc

∑
n 6=k

zkrc
rnk

By defining the sum above as Madelung’s constant, we can write:

Vn =
e

4πε0rc
Mn

It is here where we notice the utility of the Madelung constant. We
can compute the electric potential energy produced by a virtually
infinite array of ions by simply accounting for the electric potential
generated by the closest ion. Notice that the electrostatic energy
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felt by the nth ion is the electric potential acting on the ion multi-
plied by the ion’s charge,

En = Vn · ezn =
e2znMn

4πε0rc

15.2 Sodium Chloride’s Madelung Constant

Let us apply our new knowledge to the test! We will try to com-
pute the Madelung constant for sodium chloride. We will first look
at its structure.

Figure 15.2: The unit cell of sodium chloride. Here, the blue atoms
represent sodium while the bigger green atoms represent chlorine.

Notice that, because of sodium chloride’s structure and symmetry,
the Madelung constant has the same magnitude for both sodium
and chlorine. However, the two different Madelung constants differ
in sign, i.e.
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MNa = −MCl

If we were to define a coordinate system, with the central atom
in figure 17.1 being the origin, we can establish a series for the
Madelung constant. We can also define the coordinate system such
that half the lattice constant represents 1 unit. The lattice constant
in this case is simply the side length of the cubic unit cell in figure
17.1. This is equivalent to what we did when we normalized the
Madelung constant, as half the lattice constant is the distance to
the closest ion.

We then need to sum over all possible integral (x, y, z) coordinates.
By the Pythagorean theorem, the distance between the central
atom at (0, 0, 0) and some arbitrary ion located at (x, y, z) is

r =
√
x2 + y2 + z2

Also, notice that the sodium and chlorine atoms alternate on every
axis. To account for the difference in the sign of charge, we have to
multiply by the factor (−1)x+y+z. Since both sodium and chlorine
have the same magnitude of charge (1), we need not worry about it.
The Madelung constant is then

∑
(x,y,z)6=(0,0,0)

(−1)x+y+z√
x2 + y2 + z2

(15.4)

But, how would we even go about evaluating this?

15.3 The Riemann Series Theorem in Action

Consider the central atom in figure 17.1. We will account for long
range interactions by expanding spherically, i.e. we will consider



372 CHAPTER 15. PHYSICAL CHEMISTRY

Neighbors Distance

6 Cl− 1

12 Na+
√

2

8 Cl−
√

3

6 Na+
√

4

24 Cl−
√

5

ions a distance 1 away on our coordinate axis, then ions a distance√
2 away, and so on. We can organize this information in a table.

Therefore,

MNa = 6− 12√
2

+
8√
3
− 6√

4
+

24√
5

+ · · · (15.5)

This is indeed the series given in many introductory textbooks5,6.
However, this series diverges! This was proven by Emersleben in
19517. We will outline his proof here:

Proposition. The series given in (15.5) diverges.

Proof. Denote r3(n) as the number of representations of n as a sum
of three squares. For example,

(±1)2 + 02 + 02 = 02 + (±1)2 + 02 = 02 + 02 + (±1)2 = 1

=⇒ r3(1) = 3 · 2 = 6

5J. S. Blakemore. Solid State Physics. Saunders, Philadelphia, 1969.
6C. Kittel. Introduction To Solid State Physics. Wiley, New York, 1953.
7Emersleben, O. (1951). Das Selbstpotential einer endlichen Reihe neu-

traler äquidistanter Punktepaare. Mathematische Nachrichten. 4 (3−4): 468.
doi:10.1002/mana.3210040140.
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r3(n) is simply the denominator of the nth term in (15.5). There-
fore,

MNa =

∞∑
n=1

(−1)nr3(n)√
n

(15.6)

Now, denote LR as the number of lattice points inside or on a sphere
of radius R. This can be expressed as

LR =

k∑
n=1

r3(n) (15.7)

For
√
k ≤ R <

√
k + 1, k ∈ N+. We are essentially summing all

lattice points by looking at layers of a sphere. It is easy to see that

LR −
4πR3

3
= O(R2) (15.8)

For large R, the number of lattice points inside a sphere is approx-
imately the volume of the sphere. Notice that we defined LR as
the number of lattice points inside and on the sphere. So the error
term is only of magnitude r2 because the surface area of a sphere is
4πr2. Since limR→∞

R2

R3 = 0, we can write

lim
R→∞

LR
R3

=
4π

3
(15.9)

We will proceed to prove that (15.6) diverges by contradiction. As-
sume that (15.6) converges, then

lim
n→∞

r3(n)√
n

= 0



374 CHAPTER 15. PHYSICAL CHEMISTRY

Now, consider letting R =
√
k in (15.7) to get:

L√k =

k∑
n=1

r3(n)

Multiplying by k−3/2,

L√k
k3/2

=
1

k3/2

k∑
n=1

r3(n)

Now, denote Xn = r3(n)√
n
. Thus,

L√k
k3/2

=
1

k3/2

k∑
n=1

Xn

√
n

Let k > N for some sufficiently large N ∈ N. Also, let CN =
max{Xn:n > N}, or the largest value of Xn on the interval n ∈
(N,∞). Splitting the sum,

L√k
k3/2

=
1

k3/2

N∑
n=1

Xn

√
n+

1

k3/2

k∑
n=N+1

Xn

√
n

≤ 1

k3/2

N∑
n=1

Xn

√
n+

CN

k3/2

k∑
n=N+1

√
n (15.10)

By the integral test (See Chapter 5),

k∑
n=N+1

√
n ≤

∫ k+1

N+1

√
x dx =

[
2

3
x3/2

]k+1

N+1

=
2

3

(
(k + 1)3/2 − (N + 1)3/2

)
(15.11)
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Substituting (15.11) into (15.10) gives:

L√k
k3/2

≤ 1

k3/2

N∑
n=1

Xn

√
n+

2CN
3k3/2

(
(k + 1)3/2 − (N + 1)3/2

)

=
1

k3/2

N∑
n=1

Xn

√
n+

2CN
3

((
k + 1

k

)3/2

−
(
N + 1

k

)3/2
)

Letting k →∞ gives:

lim sup
k→∞

L√k
k3/2

≤ 2CN
3

By our assumption that (15.5) converges and the definition of con-
vergence, we necessarily have

lim
N→∞

CN = 0

Thus,

lim
k→∞

L√k
k3/2

= 0

However, this is a contradiction of (15.9)! Therefore, (15.5) di-
verges.

How could this happen? Physically, we observe these long-range
interactions as defined and finite. Could there be a flaw with our
physics in deriving the Madelung constant? Well, no. The series
given in (15.4) is only conditionally convergent. Therefore, by the
Riemann series theorem, the order in which we arrange the series
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impacts its value. As a matter of fact, a conditionally convergent
series can be made to diverge, or fail to approach any limit!

The definition given in (15.3) does not specify how to go about
summing the virtually infinite terms. Therefore, we need to go
about summing series in a way that is physically meaningful as well
as physically accurate.

Perhaps, the method we used to sum our series (expanding spheres)
is incorrect. In retrospect, the expanding spheres method has no
physical meaningfulness since there are no spherical crystals. Nonethe-
less, its simplicity makes it attractive. The correct way to sum the
series in (15.4) is by the method of expanding cubes. An elemen-
tary proof for the convergence of this method is given by Borwein
et Al (1985)8.

Unfortunately, there is no closed form for (15.4)9. The method of
expanding cubes gives the value:

∑
(x,y,z)6=(0,0,0)

(−1)x+y+z√
x2 + y2 + z2

= 1.747 . . .

Which is experimentally verified. However, the rate of convergence
of this sum using straightforward methods is extremely slow. Thou-
sands of steps are required to obtain accuracy to one decimal place.

In order to accelerate computation, Bailey et Al (2006) gave the
following rapidly converging series

∑
(x,y,z)6=(0,0,0)

(−1)x+y+z√
x2 + y2 + z2

= 12π
∑

n,k≥1, odd
sech2

(
π

2
(n2 + k2)1/2

)
8Borwein, D.; Borwein, J. M.; Taylor, K. F. (1985). Convergence of Lat-

tice Sums and Madelung’s Constant. J. Math. Phys. 26 (11): 2999–3009. Bib-
code:1985JMP....26.2999B. doi:10.1063/1.526675.

9Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. Ten Prob-
lems in Experimental Mathematics. Amer. Math. Monthly 113, 481-509, 2006.
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Unfortunately, the methods employed in their derivation, such as
Jacobi theta functions and Mellin transforms, are outside the scope
of this book.

15.4 Pharmaceutical Connections

Even though most of the properties of a crystal structure can be
accurately assessed by looking at the short-range structure and in-
teractions, it is important to note that long range Coulombic at-
tractions are important and necessary for accuracy. This is espe-
cially relevant in the pharmaceutical industry, where long range
interactions affect the "bulk behavior" of crystals. Ho et Al. (2019)
state that "API (Active Pharmaceutical Ingredient) physical/chem-
ical properties across scales can significantly influence formula-
tion choice/composition, manufacturing route, and performance of
the pharmaceutical product."10 This keys us in to the importance
of the Madelung constant, and how the mathematics here indeed
translates into various fields of science!

10Ho, Raimundo, et al. Multiscale Assessment Of Api Physical Prop-
erties In The Context Of Materials Science Tetrahedron Concept. Chem-
ical Engineering in the Pharmaceutical Industry, 2019, pp. 689–712.,
doi:10.1002/9781119600800.ch30.
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15.5 The Debye Model

Definition

The Debye model is a model developed by Dutch-American
physicist and chemist Peter Debye to predict the specific
heat of solidsa. This model correctly predicts the tempera-
ture dependence of the heat capacity for low temperatures
and high temperatures, but fails at intermediate tempera-
tures due to its underlying assumptions.

aDebye, Peter (1912). Zur Theorie der spezifischen Waerme. An-
nalen der Physik. 39 (4): 789–839. Bibcode:1912AnP...344..789D.
doi:10.1002/andp.19123441404.

The dimensionless heat capacity is given by

C = 9Nk

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx

Where

• N is the number of atoms

• k is Boltzmann’s constant

• TD is the Debye temperature, which is the highest tempera-
ture in a lattice that can be achieved due to a single normal
vibration

• T is the temperature

At low temperatures,
TD
T
→∞

Hence,



15.5. THE DEBYE MODEL 379

C = 9Nk

(
T

TD

)3 ∫ ∞
0

x4ex

(ex − 1)2
dx

This integral can be easily evaluated. We start by using IBP with
u = x4, dv = ex

(ex−1)2 dx:

∫ ∞
0

x4ex

(ex − 1)2
dx =

[
− x4

ex − 1

]∞
0

−
∫ ∞
0

4x3

ex − 1
dx

We first focus on the evaluation of the first term. Its evaluation at
x =∞ can be trivially shown to be equal to 0, but its evaluation at
x = 0 requires a little more work. Using L’Hopital’s rule gives us

lim
x→0
− x4

ex − 1
= lim

x→0
−

d
dxx

4

d
dx (ex − 1)

= − lim
x→0

4e−xx3

Simply plugging in x = 0 then gives us that the first term is 0 + 0 =
0. Plugging this back into our expression for C,

C = 36Nk

(
T

TD

)3 ∫ ∞
0

x3

ex − 1
dx

Although this form was already given in (12.5), we can consider
another approach. We can multiply the integral by e−x to get,

I =

∫ ∞
0

x3e−x

1− e−x
dx
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Using the power series

1

1− x
=

∞∑
n=0

xn

We can express I as:

I =

∫ ∞
0

x3e−x
∞∑
n=0

e−xndx

Interchanging summation and integration by the dominated conver-
gence theorem,

I =

∞∑
n=1

∫ ∞
0

x3e−xndx

Integrating by parts then gives

I = 3!
∞∑
n=1

1

n4

= 6ζ(4) =
π4

15

Which agrees with our result if we had used (12.5). Plugging this
integral into the expression for C then gives

C =
12π4Nk

5

(
T

TD

)3



Chapter 16

Statistical Mechanics

381



382 CHAPTER 16. STATISTICAL MECHANICS

16.1 Introduction

Statistical mechanics may be a new field for the reader. Nonethe-
less, it is one of the pillars of modern physics, along with general
relativity and quantum mechanics. Primarily, the concepts of the
field are necessary for any calculations in physical systems that
have a large number of degrees of freedom.

Definition

In statistical mechanics, a degree of freedom is a scalar quan-
tity describing the microstate of the system. A microstate
is simply a specific microscopic configuration of a thermody-
namic system.

The field derives from concepts in statistics as well as physical prin-
ciples1. To describe a system. statistical mechanics introduces the
notion of a statistical ensemble which was introduced by the
American scientist Josiah Willard Gibbs in 19022. In Gibbs’ sem-
inal book Elementary Principles in Statistical Mechanics, he ac-
counted for several thermodynamic properties of large systems in
terms of the statistics of ensembles. This, along with the works of
James Clerk Maxwell and Ludwig Boltzmann, established the foun-
dations of statistical mechanics.

Definition

The statistical ensemble is a collection of many possible
states of a system, each assigned a certain probability. Sim-
ply put, a statistical ensemble is a probability distribution
for the state of the system.

1Tolman, R. C. (1938). The Principles of Statistical Mechanics. Dover Pub-
lications. ISBN 9780486638966.

2Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechan-
ics. New York: Charles Scribner’s Sons.
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Now, there are three main ensembles defined for any isolated sys-
tem occupying a finite volume:

• Microcanonical ensemble

• Canonical ensemble

• Grand canonical ensemble

These ensembles are the primary means by which statistical me-
chanics derives its theoretical predictions. After a brief introduc-
tion to this field, we will now transition into the applications of the
mathematics we have learned!

16.2 Equations of State

The reader might recall the ideal gas law from chemistry,

PV = nRT (16.1)

Where:

• P denotes the pressure

• V denotes the volume

• n denotes the number of moles of gas

• R denotes the ideal gas constant

• T denotes the absolute temperature (in kelvins)

The equation was first stated by the French physicist Émile Clapey-
ron as a combination of the less inclusive gas laws of Boyle, Charles,
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Avogadro, and Gay-Lussac3. This equation is the equation of
state of the hypothetical ideal gas. An ideal gas is a theoretical
gas composed of a large number of randomly moving point parti-
cles whose only interactions are perfectly elastic collisions. How-
ever, this is far from true, especially for gases in high pressure, low
temperature settings. Furthermore, gases with large particles also
deviate from ideal behavior.

Nonetheless, the ideal gas serves as a first model in thermodynam-
ics and statistical mechanics. In more advanced curricula, correc-
tions to this model are introduced. One correction is the compress-
ibility factor.

Definition

The compressibly factor, usually denoted as Z, is a correc-
tion factor which describes the deviation of a real gas from
ideal gas behaviour. It is defined as:

Z =
PV

nRT

Notice that for an ideal gas, Z = 1 by the ideal gas formula
(16.1).

Before we proceed, we need to make note of statistical mechan-
ics’ use of the number of particles instead of the number of moles.
Moreover, note that the ideal gas constant is given by:

R = Ak

Where A denotes Avogadro’s constant and k denotes Boltzmann’s
constant. Therefore, we can express the ideal gas law as

3Clapeyron, E. (1834). Mémoire sur la puissance motrice de la chaleur.
Journal de l’École Polytechnique (in French). XIV: 153–90. Facsimile at the
Bibliothèque nationale de France (pp. 153–90).
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PV = NkT

Where N denotes the number of particles.

16.3 Virial Expansion

One way to approximate Z is by using the virial expansion. We will
begin by defining the particle density as

ρ ≡ N

V

=⇒ P

kT
= ρ

Now, consider writing Z as a power series in ρ:

Z = 1 +B2ρ+B3ρ
2 + · · ·

The coefficients B2, B3, · · · are often represented by Taylor series
in 1

T . The biggest correction to ideal gas behavior will be our first
coefficient, B2. It is given by

B2(T ) = −2π

∫
r2
(
e−u(r)/(kT ) − 1

)
dr

Where u(r) gives the potential energy at r.
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16.3.1 Lennard-Jones Potential

Scientific Model

The Lennard-Jones potential is a simple model that approx-
imates the interaction between a pair of neutral atoms or
molecules. A form of this interatomic potential was first pro-
posed in 1924 by John Lennard-Jonesa. The most common
version of this model is given by:

VLJ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

aLennard-Jones, J. E. (1924). On the Determination of Molec-
ular Fields. Proc. R. Soc. Lond. A, 106 (738): 463–477. Bib-
code:1924RSPSA.106..463J, doi:10.1098/rspa.1924.0082

Where

• ε is the depth of the potential well

• σ is the finite distance at which the inter-particle potential is
zero

• r is the distance between the particles

Due to its mathematical simplicity, the Lennard-Jones potential is
used extensively in computer simulations of chemical phenomena
even though more accurate models exist. The r−12 term, which is
the repulsive term, describes Pauli repulsion at short ranges due to
overlapping electron orbitals (See Pauli exclusion principle), and
the r−6 term describes attraction at long ranges due to electric
dipole fluctuations (Van der Waals force, or dispersion force).

With this interaction potential, the first virial coefficient is given
by:
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B2 = −2π

∫ ∞
0

r2

[
exp

(
−VLJ(r)

kT

)
− 1

]
dr

= −2π

∫ ∞
0

r2

exp

− 4ε

kT

[(
σ

r

)12

−
(
σ

r

)6
]− 1

dr

Where exp denotes the exponential function, i.e. exp(x) = ex. Sub-
stituting x = r

σ , dx = 1
σdr gives:

B2 = −2πσ3
∫ ∞
0

x2

exp

(
− 4ε

kT

[
1

x12
− 1

x6

])
− 1

dx

Substituting again with T ∗ = kT
ε ,

B2 = −2πσ3
∫ ∞
0

x2

exp

(
− 4

T ∗

[
1

x12
− 1

x6

])
− 1

dx

Challenge Problem

Show that the above expression can be expressed asa:

B2 = −2
∞∑
n=1

1

4n!
Γ

(
2n− 1

4

)(
1

T ∗

)(2n+1)/4

This series converges rapidly for T ∗ > 4.
aReichl, L. E. (2017). A modern course in statistical physics. Wein-

heim: Wiley-VCH.
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16.4 Blackbody Radiation

Every object spontaneously and continuously emits electromagnetic
radiation. To be more precise, any object with a temperature above
0 kelvin emits electromagnetic radiation. This radiation is a distri-
bution of light with different frequencies. The hotter the object, the
higher frequencies it generates. That is why when a piece of metal
is heated, it starts to glow with a mildly dull red color and then
progresses to a brighter yellow, a color with a higher frequency.

Even the person reading this right now is generating light! How-
ever, much of this light is in the infrared spectrum, making it invis-
ible to the unassisted human eye. Nonetheless, it is still energy that
can be harnessed for power.

Conversely, all objects absorb electromagnetic radiation to some de-
gree as well. We define an object that absorbs all radiation falling
on it, at all wavelengths, as a black body.

The spectral radiance, Bν , of a body describes the amount of en-
ergy it emits at different radiation frequencies. When a black body
is at a uniform temperature, its emission has a characteristic fre-
quency distribution that depends on the temperature. This emis-
sion is called black-body radiation.

Now, we go back about 100 years to the year 1900. The model
used to calculate the spectral radiance of a black body was the
Rayleigh-Jeans law given by

Bλ(T ) =
2ckT

λ4

Where

• λ is the wavelength

• c is the speed of light
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• k is Boltzmann’s constant

• T is the absolute temperature

We can also write the Rayleigh-Jeans law in terms of the frequency,
ν,

Bν(T ) =
2ν2kT

c2

The British physicist Lord Rayleigh derived the λ−4 dependence
of the spectral radiance based on both classical physical arguments
and empirical facts4. Then, a more complete derivation that in-
cluded the proportionality constant was presented by Rayleigh and
Sir James Jeans in 1905.

Notice the word classical in the above paragraph. As it turns out,
this theory fails and demonstrates a key error in the understand-
ing of physics at the time. As for why the theory is erroneous, re-
call that a black body emits a distribution of light frequencies. So,
we might perhaps want to integrate Bν(T ) over all ν to gauge how
much energy an object is emitting

∫ ∞
0

Bν(T ) dν =

∫ ∞
0

2ν2kT

c2
dν

2kT

c2

[
ν3

3

]∞
0

=∞

Which diverges! But, this can not be true. The energy an object
is emitting must be finite. This theoretical malfunction would be
named the ultraviolet catastrophe. The problem is, the law cor-
rectly predicts experimental results for ν < 105 GHz but fails to do

4Kutner, Mark L. (2003). Astronomy: A Physical Perspective. Cambridge
University Press. p. 15. ISBN 0-521-52927-1.
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so as frequencies reach the ultraviolet region of the electromagnetic
spectrum.

Figure 16.1: The black curve, representing the Rayleigh-Jeans law,
diverges from the observed intensity. Image by Darth Kule - Own
work, Public Domain, https://commons.wikimedia.org/w/index.
php?curid=10555337

Enter stage right the revolutionary German physicist Max Planck,
also known as the father of quantum mechanics (Which was due to
this topic!). Planck showed that the spectral radiance of a body for
frequency ν at absolute temperature T is given by

Bν(ν, T ) =
2hν3

c2
1

e
hν
kT − 1

Where h denotes the Planck constant. Note that Bν has the unit

https://commons.wikimedia.org/w/index.php?curid=10555337
https://commons.wikimedia.org/w/index.php?curid=10555337
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"power per unit surface area per unit solid angle per unit frequency
emitted." To derive the power emitted per unit area, we have to
calculate the integral

P

A
=

∫ ∞
0

Bνdν

∫ 2π

0
dφ

∫ π/2

0
cos θ sin θ dθ

= π

∫ ∞
0

Bνdν

Substituting x = hν
kT , dν = kT

h dx gives:

∫ ∞
0

Bν dν =

(
2h

c2

)(
kT

h

)4 ∫ ∞
0

x3

ex − 1
dx

It is here where we see that we can use (16.2). However, we can
derive that formula here! We begin by letting

f(α) =

∫ ∞
0

xα

ex − 1
dx

Now, consider the integral definition of the Gamma function

Γ(z) =

∫ ∞
0

xz−1e−xdx

Then the substitution x = nu, dx = n du for some n ∈ N+ yields:

Γ(z) =

∫ ∞
0

nzuz−1e−nudu

∴
1

nz
=

1

Γ(z)

∫ ∞
0

uz−1e−nudu
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We can now sum both sides from n = 1 to ∞.

∞∑
n=1

1

nz
=
∞∑
n=1

1

Γ(z)

∫ ∞
0

uz−1e−nudu

By the dominated convergence theorem, we can interchange sum-
mation and integration to get

∞∑
n=1

1

nz
=

1

Γ(z)

∫ ∞
0

uz−1
∞∑
n=1

e−nudu

We can then easily evaluate the sum on the RHS by the power se-
ries expansion of 1

1−x .

=⇒
∞∑
n=1

1

nz
=

1

Γ(z)

∫ ∞
0

uz−1
(

1

1− e−u
− 1

)
du

=
1

Γ(z)

∫ ∞
0

uz−1e−u

1− e−u
du

We can multiply by eu

eu to get:

∞∑
n=1

1

nz
=

1

Γ(z)

∫ ∞
0

uz−1

eu − 1
du

Notice that for R(z) > 1, the RHS is equivalent to ζ(z). Therefore,

ζ(z)Γ(z) =

∫ ∞
0

uz−1

eu − 1
du (16.2)

Which is a beautiful formula. It gives rise to this interesting result,
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∫ ∞
0

u

eu − 1
du =

π2

6

We can then use (16.2) to determine that∫ ∞
0

x3

ex − 1
dx = ζ(4)Γ(4) = 6 · π

4

90
=
π4

15

Back to our original problem, we have that

P

A
=
π5

15

(
2h

c2

)(
kT

h

)4

=

(
2π5k4

15h3c2

)
T 4

This is the Stefan–Boltzmann law, which is used in a variety of
applications. Markedly, it is used in astrophysics to calculate the
temperature of stars!

16.5 Fermi-Dirac (F-D) Statistics

Fermi–Dirac statistics describe a distribution of particles over en-
ergy states in systems consisting of many identical particles that
obey the "Pauli exclusion principle". It is named after the Italian
physicist Enrico Fermi and English physicist Paul Dirac5,6.

5Fermi, Enrico (1926). Sulla quantizzazione del gas perfetto monoatomico.
Rendiconti Lincei (in Italian). 3: 145–9., translated as Zannoni, Alberto
(1999-12-14). On the Quantization of the Monoatomic Ideal Gas. arXiv:cond-
mat/9912229.

6Dirac, Paul A. M. (1926). On the Theory of Quantum Mechan-
ics. Proceedings of the Royal Society A. 112 (762): 661–77. Bib-
code:1926RSPSA.112..661D. doi:10.1098/rspa.1926.0133. JSTOR 94692.
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Scientific Model

The Fermi-Dirac (F-D) distribution characterizes a system
of identical fermions (particles with half integer spin) in
thermodynamic equilibrium. In that scenario, the average
number of fermions in a single-particle state i is given by the
sigmoid functiona:

ni =
1

e(Ei−µ)/kT + 1
(16.3)

aReif, F. (1965). Fundamentals of Statistical and Thermal Physics.
McGraw–Hill. ISBN 978-0-07-051800-1.

Where

• k is Boltzmann’s constant

• T is the absolute temperature

• Ei is the energy of a single-particle state i

• µ is the total chemical potential

Fermions include all quarks and leptons, as well as all composite
particles made of an odd number of these. They can be either el-
ementary particles (electrons) or composite particles (protons).
The F-D distribution is most frequently applied to electrons, which
have spin 1

2 . The F–D distribution is only valid if the number of
fermions in the system is large enough so that adding fermions has
a negligible effect on µ.

Derivation. We begin by noting the Pauli Exclusion Principle:
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Scientific Law

The Pauli exclusion principle was formulated by Austrian
physicist Wolfgang Pauli in 1925 for electrons, and later ex-
tended to all fermions with his spin–statistics theorem of
1940a. It states that two or more identical fermions cannot
occupy the same quantum state within a quantum system
simultaneously.

aPauli, Wolfgang (1980). General principles of quantum mechanics.
Springer-Verlag. ISBN 9783540098423.

So we have the restriction that in our system, each allowed energy
state si can accommodate one and only one fermion. We can also
set the restrictions that

• N , the number of fermions in the system, is a fixed number

•
∑

iEiNi, the total energy of the system, is constant

Now, consider the problem of placing Ni indistinguishable fermions
in the ith level into Si states. This is simply:

Wi =

(
Si
Ni

)
=

Si!

(Si −Ni) !Ni!

Therefore, the total number of ways to arrange indistinguishable
fermions in a multi-level system is

W =
∏
i

Wi =
∏
i

Si!

(Si −Ni) !Ni!

Where the product is taken over all i. We now seek to set Ni val-
ues such that we maximize W using our basic optimization tools.
Remember from the fundamental laws of thermodynamics that
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the most likely distribution is that with the largest amount of mi-
crostates. But, before we proceed we need to take the natural loga-
rithm of W . Simply put, solving d (lnW ) = 0 is much simpler than
solving d(W ) = 0. Since

d (lnW ) =
d(W )

W

And W 6= 0, we are justified in this step. Taking the natural loga-
rithm of W ,

lnW =
∑
i

ln (Si! )− ln
(
(Si −Ni)!

)
− ln (Ni! )

Since we are dealing with a large number of fermions, we can use
Stirling’s formula from (1.5).

lnx! = x lnx− x

For large x. Applying this approximation gives:

lnW =
∑
i

Si ln (Si)− Si − (Si −Ni) ln (Si −Ni)

+ (Si −Ni)−Ni ln (Ni) +Ni

=
∑
i

Si ln (Si)− (Si −Ni) ln (Si −Ni)−Ni ln (Ni)

Now, we are in a comfortable place to perform our optimization.

d lnW

dNi
=
∑
i

∂W

∂Ni
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d (lnW ) =
∑
i

∂W

∂Ni
dNi (16.4)

Since dSi
dNi

= 0 (Si is a constant with respect to Ni), we can write:

∂W

∂Ni
= ln (Si −Ni) + 1− ln (Ni)− 1

= ln

(
Si
Ni
− 1

)
(16.5)

Plugging this value into (16.4),

d (lnW ) =
∑
i

[
ln

(
Si
Ni
− 1

)]
dNi

Now, our optimization step.

∑
i

[
ln

(
Si
Ni
− 1

)]
dNi = 0

But, we have the restrictions:

• There is a fixed number of particles

• The energy of the system is constant

Although many readers are familiar with how to deal with such
constrained problems (Using Lagrange multipliers), a brief intro-
duction to Lagrange multipliers will be provided.
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Theorem

The method of Lagrange multipliers is a strategy for finding
the local maxima or minima of a function subject to equality
constraintsa. The method for one constraint can be summa-
rized as follows: in order to find the stationary points of f(x)
under the constraint g(x) = 0, find the stationary points of:

L(x, λ) = f(x) + λg(x)

Where λ is the Langrage multiplier.
aHoffmann, Laurence D.; Bradley, Gerald L. (2004). Calculus for

Business, Economics, and the Social and Life Sciences (8th ed.). pp.
575–588. ISBN 0-07-242432-X.

This method is advantageous since it allows optimization problems
to be solved without explicit parameterization in terms of the con-
straints. Therefore, the method of Lagrange multipliers is very pop-
ular in solving challenging constrained optimization problems. Us-
ing this method gives the two constraints:

N −
∑
i

Ni = 0

E −
∑
i

EiNi = 0

Therefore,

L(x, λ1, λ2) = lnW + λ1

N −∑
i

Ni

+ λ2

E −∑
i

EiNi



In general, we can maximize W using dL
dNi

= 0,
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∂W

∂Ni
= λ1 + λ2Ei

Using (16.5) and exponentiating both sides„

ln

(
Si
Ni
− 1

)
= λ1 + λ2Ei

Si
Ni
− 1 = eλ1+λ2Ei

∴ Ni =
Si

1 + eλ1+λ2Ei

For some constants λ1, λ2. Now, our focus shifts to trying to evalu-
ate λ1, λ2. Recall Boltzmann’s law, which states that:

S = k lnW = kL(x, λ1, λ2)

Where S denotes entropy. We can then see that

∂S

∂N
= kλ1 ,

∂S

∂E
= kλ2

We can now utilize the thermodynamic equation

dE = TdS − PdV + µdN

=⇒ dS =
1

T
(dE + PdV − µdN)

=⇒
(
∂S

∂N

)
E,V

= kλ1 = −µ
T
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∂S

∂E

)
N,V

= kλ2 =
1

T

Solving for λ1, λ2

λ1 = − µ

kT

λ2 =
1

kT

Therefore,

ni =
1

e(Ei−µ)/kT + 1
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17.1 Volume of a Hypersphere of Dimension
N

The N deminsional hypersphere, or N−ball, is a generalization of
the notion of a sphere to higher dimensions. A a circle of radius R
(which can be regarded as a 2−ball) has the equation:

x2 + y2 ≤ R2

Similarly, for 3 dimensions, the equation of a sphere of radius R is
given by:

x2 + y2 + z2 ≤ R2

In general, for an N−ball, its volume is the volume enclosed by

x21 + x22 + · · ·+ x2N ≤ R2

17.1.1 Spherical Coordinates

To the reader that is familiar with multiple integrals and the use of
spherical coordinates, this section will be rather easy. However, a
brief introduction is given below.
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Definition

The spherical coordinates of a point are given by (r, θ, ϕ),
where

• r =
√
x2 + y2 + z2

• ϕ = arctan
( y
x

)
• θ = arccos

(
z
r

)
And r, θ, ϕ denote radius, inclination, and azimuth, respec-
tively.

Conversely, one can write:

• x = r sin θ cosϕ

• y = r sin θ sinϕ

• z = r cos θ

We can extend this spherical coordinate system to an arbitrary di-
mension. By using the notion of the Jacobian,

dnV =

∣∣∣∣ ∂(x1, x2, · · · , xn)

∂(r, ϕ1, · · · , ϕn−1)

∣∣∣∣
= det



cos(ϕ1) −r sin(ϕ1) 0 0 · · · 0
sin(ϕ1) cos(ϕ2) r cos(ϕ1) cos(ϕ2) −r sin(ϕ1) sin(ϕ2) 0 · · · 0

...
...

... . . .
...
0

sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1) · · · · · · −r sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1)
sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1) r cos(ϕ1) · · · sin(ϕn−1) · · · r sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1)



= rn−1 sinn−2(ϕ1) sinn−3(ϕ2) · · · sin(ϕn−2) dr dϕ1 dϕ2 · · · dϕn−1
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Where |·| denotes the determinant. In this coordinate system, there
is one radial coordinate, r, and n − 1 angular coordinates. The do-
main of each angular coordinate is [0, π], except φn−1 which has
domain [0, 2π). A more detailed derivation can be found in the Blu-
menson (1960)1.

17.1.2 Calculation

Using spherical coordinates, the volume of an N−ball is

VN (R) =

∫ R

0

∫ π

0

∫ π

0
· · ·
∫ 2π

0
rN−1 sinN−2(ϕ1) · · ·

sin(ϕN−2) dϕN−1 · · · dϕ2 dϕ1dr

We can write the iterated integral above as a product of integrals

VN (R) =

(∫ R

0
rN−1dr

)(∫ 2π

0
dϕN−1

)(∫ π

0
sinN−2(ϕ1)dϕ1

)
· · ·
(∫ π

0
sin(ϕN−2)dϕN−2

)

Evaluating the first integral,

VN (R) =
RN

N

(∫ 2π

0
dϕN−1

)(∫ π

0
sinN−2(ϕ1)dϕ1

)
· · ·
(∫ π

0
sin(ϕN−2)dϕN−2

)
1Blumenson, L. E. (1960). A Derivation of n-Dimensional Spheri-

cal Coordinates. The American Mathematical Monthly. 67 (1): 63–66.
doi:10.2307/2308932. JSTOR 2308932.
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Notice that this is very close to the trigonometric integral form of
beta function,

B(x, y) = 2

∫ π
2

0
sin2x−1(t) cos2y−1(t)dt

See (11.3) for derivation. However, we need to find a way to change
the interval of our integrals to

[
0, π2

]
. The first integral’s change

in domain is trivial to compute. But, for the integrals with a sin
term, we need to notice that sinN−1(x) is symmetric around π

2 in
the interval [0, π].

Figure 17.1: Graph of y = sinN x for different values of N on x ∈
[0, π]

Therefore,



406 CHAPTER 17. MISCELLANEOUS

VN (R) =
RN

N

(
2

∫ π
2

0
sinN−2(ϕ1)dϕ1

)
· · ·

(
2

∫ π
2

0
sin(ϕN−2)dϕN−2

)

·

(
4

∫ π
2

0
dϕN−1

)

Now, we have a form that is equivalent to (11.3)! We can then
write VN (R) as

VN (R) =
RN

N
·B
(
N − 1

2
,
1

2

)
·B
(
N − 2

2
,
1

2

)
· · ·B

(
1,

1

2

)
·2B

(
1

2
,
1

2

)

=
RN

N
·

Γ
(
N−1
2

)
Γ
(
1
2

)
Γ
(
N
2

) ·
Γ
(
N−2
2

)
Γ
(
1
2

)
Γ
(
N−1
2

) Γ
(
N−3
2

)
Γ
(
1
2

)
Γ
(
N−2
2

)
· · ·

Γ (1) Γ
(
1
2

)
Γ
(
3
2

) · 2
Γ
(
1
2

)
Γ
(
1
2

)
Γ (1)

Notice that the finite product telescopes. Thus, using nΓ(n) =
Γ(n+ 1), we have

VN (R) =
2π

N
2 RN

NΓ
(
N
2

)
∴ VN (R) =

π
N
2 RN

Γ
(
N
2 + 1

) (17.1)
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17.1.3 Discussion

Using (17.1), the unit ball in N dimensions has volume

VN (1) =
π
N
2

Γ
(
N
2 + 1

)
An interesting question might be:

When does the volume of a unit N−ball reach its maximum?

We can plot VN (1) to get an idea:

Figure 17.2: Graph of y = Vx(1)

The volume demonstrably peaks at N = 5. But, what is so special
about 5? Nothing particular. If the radius were to be changed, the
peak in (17.2) would shift. Consider, for example, an N−ball of
radius 2 (figure (17.3)).

Which demonstrably peaks much later. This trend of larger peaks
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Figure 17.3: For the case of R = 2, the volume peaks around N =
25

should be intuitive from the RN term in the numerator.

Challenge Problem

Let n ∈ N be the value at which VN (R) has a maximum.
Prove that:

b2πR2 − 2e−γc ≤ n ≤ b2πR2 − 1c

Hint: Use the result:a,b

log

(
x− 1

2

)
< ψ(x) < ln

(
x+ e−γ − 1

)
aF. Qi and B.-N. Guo. Sharp inequalities for the psi function and

harmonic numbers. arXiv:0902.2524.
bN. Elezovic, C. Giordano and J. Pecaric. The best bounds in

Gautschi’s inequality. Math. Inequal. Appl. 3 (2000). 239–252.

However, one feature for all radii holds true, the volume of the hy-
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persphere always tends to 0 as N → ∞. This is easy to show by
taking the limit of VN (R):

lim
N→∞

VN (R) = lim
N→∞

π
N
2 RN

Γ
(
N
2 + 1

)

Which can be easily shown to equal 0 by using Stirling’s formula.
But, what is an intuitive explanation for this? From the definition
of an N−ball, we know that the region defined by

x21 + x22 + · · ·x2N ≤ R2

Gives the volume of a N−ball of radius R. For the sake of simplic-
ity, let us consider R = 1. This argument can, however, easily be
extended to any R > 0. As N grows, most xn must be close to 0.
Consider the line given by:

x1 = x2 = · · · = xN

This line intersects our N−ball at ±
(

1√
N
, · · · , 1√

N

)
. As N → ∞,

this bounding region becomes smaller and smaller.

17.1.4 Applications

This brings us to the importance of this rather abstract problem.
In fact, the result we obtained about the limiting behavior of VN (R)
is a part of the larger curse of dimensionality:
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Definition

The curse of dimensionality refers to various phenomena
that arise when analyzing data in high-dimensional spaces,
that do not occur in low-dimensinal space such as the
3−dimensional space we experience everyday. This expres-
sion was coined by the American mathematician Richard E.
Bellman. Bellman used this expression to characterize some
phenomena in dynamic programming , a method developed by
Bellmana,b.

aRichard Ernest Bellman (1961). Adaptive control processes: a
guided tour. Princeton University Press.

bRichard Ernest Bellman (2003). Dynamic Programming. Courier
Dover Publications. ISBN 978-0-486-42809-3.

This phenomenon arises often in statistics and machine learning.
Interestingly, with a fixed amount of training data, the predictive
power of a machine learning classifier or regressor first increases
but then decreases. This phenomenon is named the peaking phe-
nomenon and is similar to the trend in volume of a N−ball (See
figure 17.2 and 17.3)2. Indeed, it is because the notion of N−balls
is vital to data analysis in higher dimensions. Our analysis of N−balls
is especially relevant to k−nearest neighbor classification3.

17.1.5 Mathematical Connections

The notion of the volume of a N−ball appears in many fields of
mathematics, especially in measure theory. For example, for any
Borel set S, the following equality holds:

2Koutroumbas, Sergios Theodoridis, Konstantinos (2008). Pattern Recogni-
tion - 4th Edition. Burlington.

3Radovanović, Miloš; Nanopoulos, Alexandros; Ivanović, Mirjana (2010).
Hubs in space: Popular nearest neighbors in high-dimensional data. Journal of
Machine Learning Research. 11: 2487–2531.
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λN (S) = 2−NVN (1)HN (S)

Where

• λN denotes the N−dimensional Lebesgue measure

• HN (S) denotes the N−dimensional Hausdorff measure

The reader should be familiar with the Lebesgue measure, which
was discussed briefly earlier. The Hausdorff measure is fundamental
in geometric measure theory, and appears in harmonic analysis4,5.

4Morgan, F. (2016). Geometric measure theory: a beginners guide. Amster-
dam: Academic Press.

5Toro, T. (2019). Geometric Measure Theory–Recent Applications. Notices
of the American Mathematical Society, 66(04), 1. doi: 10.1090/noti1853
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Appendix A

It is standard knowledge that the imaginary unit, i, is equal to√
−1. The term "imaginary" was coined by the French polymath

René Descartes in an effort to devalue imaginary numbers’ valid-
ity6. In the third book of his La Géométrie, Descartes states:

Moreover, the true roots as well as the false [roots] are not
always real; but sometimes only imaginary [quantities]; that
is to say, one can always imagine as many of them in each
equation as I said; but there is sometimes no quantity that
corresponds to what one imagines, just as although one can
imagine three of them in this [equation], x3−6x2+13x−10 =
0, only one of them however is real, which is 2, and regarding
the other two, although one increase, or decrease, or multiply
them in the manner that I just explained, one would not be
able to make them other than imaginary [quantities].

However, after the pioneering work of Euler and Gauss, both accep-
tance and interest in imaginary numbers rose.

Interest in e and the imaginary unit first arose from Bernoulli’s ob-

6Giaquinta, Mariano; Modica, Giuseppe (2004). Mathematical Analysis:
Approximation and Discrete Processes. Springer Science Business Media. p.
121. ISBN 978-0-8176-4337-9. Extract of page 121
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servation that:7

1

1 + x2
=

1

2

(
1

1 + ix
+

1

1− ix

)
Which, when combined with the standard integral∫

dx

1 + αx
=

ln(1 + αx)

α
+ C

Can give us an idea of what the complex natural logarithm is. An-
other notable formula is due to the English mathematician Roger
Cotes:8

ln(cosx+ i sinx) = ix

Which was discovered in 1714. In 1748, Euler published his famous
formula which states that

eix = cosx+ i sinx

Proof. We will present a standard proof due to Euler. Recall the
Taylor series for sinx and cosx:

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
+ · · ·

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+
x4

4!
+ · · ·

Also, recall the Taylor series of the exponential function
7Bernoulli, Johann (1702). Solution d’un problème concernant le calcul in-

tégral, avec quelques abrégés par rapport à ce calcul [Solution of a problem in
integral calculus with some notes relating to this calculation]. Mémoires de
l’Académie Royale des Sciences de Paris. 1702: 197–289.

8Grattan-Guinness, I. (2000). The rainbow of mathematics: a history of the
mathematical sciences. New york: W.W. Norton Company.
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ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ · · ·

Substituting x→ ix in the series expansion of ex gives

eix =
∞∑
n=0

(ix)n

n!

= 1 + ix+
i2x2

2!
+
i3x3

3!
+
i4x4

4!
+ · · ·

= 1 + ix− x2

2!
− ix3

3!
+
x4

4!
+ · · ·

Notice that we can separate even and odd powers of x,

eix =

(
1− x2

2!
+
x4

4!
+ · · ·

)
+ i

(
x− x3

3!
+
x5

5!
+ · · ·

)

The first sum is cosx and the second sum is sinx. Therefore,

eix = cosx+ i sinx (17.2)

Substituting x→ −x in (17.2),

e−ix = cosx− i sinx (17.3)

Since cos(·) and sin(·) are even and odd functions, respectively.
Adding (17.2) and (17.3) gives
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cosx =
eix + e−ix

2

While subtracting (17.2) and (17.3) gives

sinx =
eix − e−ix

2i

We can also derive the beautiful result

eiπ + 1 = 0

Using (17.2), which is famously known as Euler’s identity. The
physicist Richard Feynman called this equation "our jewel" and
"the most remarkable formula in mathematics"9. The author agrees
wholeheartedly with Feynman’s assessment! It is perhaps useful to
introduce another approach to deriving Euler’s formula.

Proof. Let

f(x) = cosx+ i sinx

We will begin by differentiating f(x):

df

dx
= − sinx+ i cosx

= if(x)

We now have the differential equation

9Feynman, Richard P. (1977). The Feynman Lectures on Physics, vol. I.
Addison-Wesley. p. 22-10. ISBN 0-201-02010-6.
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df

dx
= if(x)

df

f(x)
= idx

Integrating, ∫
df

f(x)
=

∫
i dx

ln f(x) = ix+ C

=⇒ f(x) = eix+C = C1e
ix

Now, f(0) = 1, so C1 = 1. Therefore,

eix = cosx+ i sinx

We now move our discussion to the complex logarithm.

Definition

The complex logarithm is defined similarly to the real loga-
rithma. Let

ex = z

Then
ln z = x

aSarason, Donald (2007). Complex Function Theory (2nd ed.).
American Mathematical Society.

Proposition. For any complex number, there are infinitely many
complex logarithms.
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Proof. Let z = reiθ for r, θ ∈ R and r > 0. Then one value of the
complex logarithm is:

ln z = ln r + iθ

However, note that z can also be represented as z = reiθ+2ikπ for
any k ∈ N since

e2ikπ = cos(2πk) + i sin(2πk) = 1

Taking the complex logarithm of both sides of z = reiθ+2ikπ gives,

ln z = ln r + (θ + 2kπ)i

Since we can choose any k ∈ N, there are infinitely many values of
the complex logarithm.

The complex logarithm is defined as a multi-valued function. Hence,
a branch is required to define the complex logarithm as a function.
In most cases, we will deal with the principal value of the complex
logarithm. For each complex number z ∈ C \ 0, the principal value
of ln z is the logarithm whose imaginary part lies in the interval
(−π, π]. We can then write the principal value of the complex loga-
rithm as

ln z = ln r +

{
θ

2π

}
(17.4)

For some z = reiθ. Here {·} denotes the fractional part. The in-
terested reader should refer to chapter 8 for a survey of problems
involving fractional parts.



Appendix B

Any introductory two-semester calculus course sequence is bound
to investigate Taylor series. However, this appendix shall serve as a
quick review.

The Taylor series of some function, f(x), is its representation as an
infinite sum of terms. These terms are calculated from the values
of the derivatives of f(x) at a single point. We can present a more
formal definition below:

Definition

Let f(x) be an infinitely differentiable complex-valued func-
tion at x = α. Its Taylor series is then given by the infinite
power series:

f(x) = f(α) +
f ′(α)

1!
(x− α) +

f ′′(α)

2!
(x− α)2

+
f ′′′(α)

3!
(x− α)3 + · · ·

Or, using summation notation,

∞∑
n=0

f (n)(α)

n!
(x− α)n
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Where f (n) denotes the nth derivative of f . Some Taylor series in-
clude:

Exponential Function

ex =
∞∑
n=0

xn

n!

Which converges for all x ∈ C

Logarithmic Function

ln(1− x) = −
∞∑
n=1

xn

n
= −x− x2

2
− x3

3
− · · · ,

ln(1 + x) =
∞∑
n=1

(−1)n−1xn

n
= x− x2

2
+
x3

3
− · · · .

Which always converge for |x| < 1. It is worth noting that the series
representations of ln(1− x) and ln(1 + x) converge at x = −1 and
x = 1, respectively.

Trigonometric Functions

sinx =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
− · · ·

cosx =

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
− · · ·

tanx =
∞∑
n=1

B2n(−4)n (1− 4n)

(2n)!
x2n−1 = x+

x3

3
+

2x5

15
+ · · ·
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arcsinx =

∞∑
n=0

(2n)!

4n(n! )2(2n+ 1)
x2n+1 = x+

x3

6
+

3x5

40
+ · · ·

arccosx =
π

2
− arcsinx

=
π

2
−
∞∑
n=0

(2n)!

4n(n! )2(2n+ 1)
x2n+1 =

π

2
− x− x3

6
− 3x5

40
− · · ·

arctanx =

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+
x5

5
− · · ·

Where Bn denotes the nth Bernoulli number, see (4.4) for more.

Hyperbolic Trigonometric Functions

sinhx =
∞∑
n=0

x2n+1

(2n+ 1)!
= x+

x3

3!
+
x5

5!
+ · · ·

coshx =

∞∑
n=0

x2n

(2n)!
= 1 +

x2

2!
+
x4

4!
+ · · ·

tanhx =
∞∑
n=1

B2n4n (4n − 1)

(2n)!
x2n−1 = x− x3

3
+

2x5

15
− 17x7

315
+ · · ·

sinh−1 x =
∞∑
n=0

(−1)n(2n)!

4n(n! )2(2n+ 1)
x2n+1 = x− x3

6
+

3x5

40
+ · · ·

tanh−1 x =
∞∑
n=0

x2n+1

2n+ 1
= x+

x3

3
+
x5

5
+ · · ·

Again, Bn denotes the nth Bernoulli number.

Binomial Series

(1 + x)α =

∞∑
n=0

(
α

n

)
xn
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Where
(
α
n

)
denotes the generalized binomial coefficient,

(
α

n

)
=

n∏
k=1

α− k + 1

k
=
α(α− 1) · · · (α− n+ 1)

n!

Notice that when α ∈ Z−, this series is equivalent to the series for

1

1 + x
,

1

(1 + x)2
,

1

(1 + x)3
, · · ·

To derive many of the above series, one needs to employ the tech-
nique of interchanging summation and integration. A nice challenge
would be trying to derive all the series listed above. Give it a try!
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Chapter 1

4. 1

5. 1

6. −1

7. −2

e

8.
1

2019

9. 1

10.
64

27

11.
π

2

Chapter 2

1.
π
√

3− 3 ln 2

9
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2.
π ln 2

8

3. π

4.
√

3−
√

2

2

5. 4
√

2− 4

6.
π

4

7.
π ln 2

3
√

3

8.
(

3
√

2− 2
)
π

9. The integrand is always positive on [0, 1], so the integral is
positive. Moreover, the integral equals 22

7
− π, which shows

that 22
7
> π.

10.
e

1
4
π

2

Chapter 3

1. ln 3

2.
π ln 2

8
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3. π ln

(√
α +
√
β

2

)

4.
π

2

5. 2π

7.
π ln 2

2

8.
π

2e

9.
π

4
√
αβ

(
1

α
+

1

β

)

Chapter 4

2.
11

96

3.
2019

1010

4. (k + 1)(k + 1)!−1

6.
3 sin 1

4

7. ln 2− ln 2020− ln(2021! )
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Chapter 6

1.
1

2e

2.
179π

360

3.
π

2

4.
(ln 2)2

2
− ζ(2)

2

5.
2k + 2

k + 2

Chapter 7

1. 2− π2

6

2.
π

22n+1

(
2n

n

)
3.

π2

2

4. −G

5.
7

4
ζ(3)
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6.
7

32
ζ(3)

7. ln 2

8. π

ln

(√
2 + 2

4

)
+
π

4
+ 1−

√
2



Chapter 8

1. −2n3

3
+

n2∑
k=1

√
k

2.
1

2

3.
1

20202
− ζ(2021)

(2020)(2021)

4.
ζ(2)− 1

2

5. π

Chapter 9

2.
ln 2π

4
+

1

8

4. 5! ζ(4)
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5.
144

625

6.
ln2 2π

3
+
π2

48
+
γ ln
√

2π

3
+
γ2

12
+
ζ ′′(2)

2π2
− ln(2π)ζ ′(2)

π2
− γζ ′(2)

π2

Chapter 10

1. −γ

2. 3− 2γ

4. 2ζ(3)

6. 3π2

2
G− 1

128

(
ψ(3)(1/4)− ψ(3)(3/4)

)

Chapter 11

2.
√

2

π

(
Γ

(
3

4

))2

3.
π3

16

6.
√
πΓ
(
5/4
)

2Γ
(
3/4
)

7.
1

4

(
Γ(1/4)

)4
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Chapter 12

1. 1

3.
π2

6

4.
π2

6
− ζ(3)

5. 1− γ

6. −5

8
ζ(3)

7.
7

16
ζ(3)− π2 ln 2

8



Integral Table

The integration constant has been omitted here.

Rational Functions

∫
xndx =

1

n+ 1
xn+1, n 6= −1

∫
1

x
dx = ln|x|

Exponential Functions

∫
exdx = ex

∫
ax dx =

1

ln a
ax
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Logarithmic Function

∫
lnx dx = x lnx− x

Trigonometric Functions

∫
sinx dx = − cosx

∫
cosx dx = sinx

∫
tanx dx = ln|secx|

∫
secx dx = ln|secx+ tanx|

∫
sec2 x dx = tanx

∫
secx tanx dx = secx

Miscellaneous

∫
a

a2 + x2
dx = tan−1

x

a
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∫
a

a2 − x2
dx =

1

2
ln

∣∣∣∣x+ a

x− a

∣∣∣∣∫
1√

a2 − x2
dx = sin−1

x

a∫
a

x
√
x2 − a2

dx = sec−1
x

a∫
1√

x2 − a2
dx = cosh−1

x

a

= ln
(
x+
√
x2 − a2

)

∫
1√

x2 + a2
dx = sinh−1

x

a

= ln
(
x+
√
x2 + a2

)
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Trigonometric Identities

Unit Circle Identities

sin2(θ) + cos2(θ) = 1

Dividing sin2(θ) + cos2(θ) = 1 by cos2(θ) or sin2(θ) gives

tan2(θ) + 1 = sec2(θ)

1 + cot2(θ) = csc2(θ)

Addition Formulas

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

Double Angle Formulas

sin(2α) = 2 sin(α) cos(α)

cos(2α) = cos2(α)− sin2(α)
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The formula for cos(2α) is often rewritten by replacing cos2(α)
with 1− sin2(α) or replacing sin2(α) with 1− cos2(α) to get

cos(2α) = 1− 2 sin2(α)

cos(2α) = 2 cos2(α)− 1

Solving for sin2(α) and cos2(α) gives power reduction formulas that
are very useful for integration

sin2(α) =
1

2
(1− cos(2α))

cos2(α) =
1

2
(1 + cos(2α))

An addition formula for tangent can be derived from the ones for
sine and cosine.

tan(α+ β) =
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)

Now dividing by
cos(α) cos(β)

cos(α) cos(β)
gives

tan(α+ β) =
tan(α) + tan(β)

1− tan(α) tan(β)

tan(2α) =
2 tan(α)

1− tan2(α)

Triple Angle Formulas

sin(3θ) = 3 sin θ − 4 sin3 θ = 4 sin θ sin

(
π

3
− θ
)

sin

(
π

3
+ θ

)

cos(3θ) = 4 cos3 θ − 3 cos θ = 4 cos θ cos

(
π

3
− θ
)

cos

(
π

3
+ θ

)
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tan(3θ) =
3 tan θ − tan3 θ

1− 3 tan2 θ
= tan θ tan

(
π

3
− θ
)

tan

(
π

3
+ θ

)

Half Angle Formulas

sin2

(
θ

2

)
=

1− cos θ

2

cos2
(
θ

2

)
=

1 + cos θ

2

tan2

(
θ

2

)
=

1− cos θ

sin θ

Try deriving other trigonometric identities using these ones as a
basis!
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